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2881 Introdu
tionIt is well known that Einstein's theory of General Relativity is not straightforward toquantize. This is easily seen from the fa
t that GR is not perturbatively renormaliz-able. Simply put, one 
an attempt to qunatize GR as an ordinary spin-two �eld in �atMinkowski spa
etime, in the following way (for a ni
e review see [1℄). Starting from theusual Einstein-Hilbert a
tion
SEH =

∫
d4x

√−gR,one rewrites the metri
 tensor gµν as the �at Minkowski metri
 ηµν and the spin-two�eld hµν as
gµν = ηµν + hµν ,and substitutes it into the a
tion, rewriting it in terms of the new variable hµν . Therebyone obtains

SEH =

∫
d4xhµν�hµν + (gauge fixing terms)+

+(self − interaction terms).The D'Alambertian operator is de�ned in �at Minkowski spa
e, � ≡ ηµν∂µ∂ν . Fromhere one 
an pro
eed to perform the standard �eld theory quantization in the naiveway � �rst formulate the free quantum �eld theory, and then introdu
e intera
tionsperturbatively.However, very soon one is bound to fa
e the di�
ulty of nonrenormalizability ofthis theory. The tree-level Feynman diagrams are �nite, the one-loop divergen
es 
anbe removed by wavefun
tion renormalization, but at the two-loop level a Lagrangian
ounterterm of the form
L2 =

const

ε2
Rαβ

µνR
µν

ρσR
ρσ

αβ (ε→ 0)appears [2℄, whi
h is nonzero on-shell. Here ε = 4 − D is the 
uto� parameter fromdimensional regularization s
heme. At higher loop levels similar terms involving R4, R5,et
. terms are also expe
ted to appear, rendering the theory perturbatively nonrenor-malizable. This means that in order to remove all divergen
es one needs to introdu
e atleast one additional 
oupling 
onstant for ea
h loop level. The in�nite number of these
oupling 
onstants implies the loss of predi
tive power of the theory, sin
e all experimentsdoable in prin
iple 
an only ever �x a �nite number of 
oupling 
onstants. This propertyof General Relativity has been known for quite some time, and there are various resear
hdire
tions whi
h attempt to address this issue. They 
an be broadly separated into two
lasses, by the methodology.The �rst 
lass of approa
hes 
onsiders modifying or substituting GR by anothertheory, whi
h should preferably be renormalizable. Su
h attempts have evolved into vastresear
h dire
tions su
h as supergravity, string �eld theory, non
ommutative geometry,



289and so on. The goal of ea
h proposed model is to have a renormalizable theory that lookslike GR at least on the length s
ales whi
h 
an be tested experimentally, while at thesame time have only a �nite number of 
oupling 
onstants. These 
oupling 
onstants 
ouldthen in prin
iple be used to predi
t the values of the in�nite set of 
oupling 
onstantsappearing in the perturbative quantum gravity approa
h.The se
ond 
lass of approa
hes is based on the point of view that abandons the renor-malization paradigm, and essentially gives physi
al meaning to the 
uto� parameters ofsome parti
ular regularization s
heme. In other words, the assumption is that at somes
ale (typi
ally expe
ted to be near the Plan
k s
ale) expe
tation values of the physi
alobservables will start to depend expli
itly on 
uto� parameters. This dependen
e is as-sumed to be measurable (in prin
iple), rather than being removed by renormalization.These attempts have also evolved into vast resear
h dire
tions su
h as loop quantumgravity, 
ausal dynami
al triangulations, 
ausal set theory, et
. The goal of all proposedmodels is exa
tly the same as before � predi
t some de�nite values for the in�nite num-ber of 
oupling 
onstants present in the perturbative quantum gravity. All these resear
hdire
tions have had limited su

ess, and in the absen
e of any experimental data relevantat the Plan
k s
ale, none of these dire
tions 
an be preferred over the others.In what follows, we shall be mainly 
on
erned with the approa
h of loop quantum gravity(for a review see [3℄), more spe
i�
ally spin foam models, and we shall propose one novelparti
ular model that addresses some serious issues present in all other spin foam modelsso far.In se
tion 2 we shall give a short overview of the status of LQG in general and spinfoam models in parti
ular. We will argue that the main drawba
ks of all 4D spin foammodels stem from the fa
t that tetrad �elds are not basi
 variables of the theory. Se
tion3 deals with the 
ategori
al generalization of the Poin
aré group, 
alled the Poin
aré
2-group. This will give us the ne
essary mathemati
al tools to reformulate the GR a
tionin a 
onvenient way whi
h in
ludes tetrad �elds as basi
 variables. The analysis of thisnew a
tion is then given in se
tion 4, with a sket
h of a quantization pro
edure givingrise to the so-
alled spin
ube model. Se
tion 5 
ontains 
on
lusions and dis
ussion of theresults.2 Loop Quantum Gravityand Spin Foam ModelsA detailed review of the Loop Quantum Gravity approa
h 
an be found in [3℄. Here wejust give some basi
 properties at an informal level.The basi
 idea of LQG is to 
hoose di�eomorphism-invariant quantities as basi
 de-grees of freedom for the gravitational �eld, and then perform a 
anoni
al nonperturbativequantization of gravity in terms of these quantities. The natural 
andidates for basi
 vari-ables turned out to be Wilson loops, and subsequently their generalizations 
alled spinnetworks. This 
hoi
e of variables introdu
es a natural di�eomorphism-invariant 
uto�



290at the Plan
k length s
ale lP , thereby rendering the theory UV-�nite. The quantizationis performed in the S
hrödinger pi
ture, and provides one with a mathemati
ally well-de�ned 
onstru
tions of the kinemati
al Hilbert spa
e for the theory and some basi
operators for geometri
 observables su
h as lengths, areas and volumes of spa
e. Evolu-tion in time is embodied in the Hamiltonian 
onstraint, 
orresponding to the Wheeler-deWitt equation in the LQG setting.The main features of su
h 
anoni
al approa
h to quantization are as follows. The the-ory represents a nonperturbative quantization of GR, and 
an in prin
iple be applied tothe study of physi
al systems where gravity is the dominant fa
tor at short distan
es �su
h systems in
lude the bla
k hole and 
osmologi
al singularities. It gives one a mathe-mati
al handle on a well-de�ned Hilbert spa
e of states for the gravitational �eld, therebygiving some insight into the quantum me
hani
al features of gravity. The natural basisfor the Hilbert spa
e is the set of the spin network states, 
ombinatorial graphs 
oloredby the irredu
ible representations of the SU(2) group, and 
orresponding intertwiners.Finally, the study of the geometri
 observables � the length, area and volume opera-tors � reveals that ea
h of them has a dis
rete spe
trum, giving rise to the geometri
interpretation of the gravitational �eld wavefun
tional, as well as the dis
rete 
hara
terof spa
e.The theory also has some drawba
ks. First, the Hamiltonian 
onstraint is not uniquelyde�ned, due to the usual ordering problems present in quantum me
hani
s. Se
ond,even if one 
hooses some parti
ular ordering, the Hamiltonian 
onstraint is extremely
ompli
ated and impossible to solve in pra
ti
e. This severely limits the possibility forany pra
ti
al 
al
ulations and the study of the dynami
s of the theory. As the mainobsta
le, the proof of the 
orre
t semi
lassi
al limit of the theory is still missing, as wellas any attempt to predi
t the 
oupling 
onstants from the perturbative gravity approa
h.A way to resolve these drawba
ks has been found in the spin foam approa
h [4℄. Theidea is to give up 
anoni
al quantization, but instead attempt a 
ovariant, path-integralquantization of the theory. Building on the results of the 
anoni
al approa
h, one wantsto de�ne the gravitational path-integral
Z =

∫
Dgµν exp (iSEH [gµν ])in some way, in order to be able to 
al
ulate expe
tation values of observables, both indeep quantum regime and the semi
lassi
al regime. This approa
h tends to give one agood handle on the dynami
s of the theory, in addition to all features of the 
anoni
alapproa
h.The basi
 pro
edure of de�ning Z goes as follows. One starts from the Plebanskia
tion for General Relativity,

S =

∫
Bab ∧Rab + φabcdBab ∧Bcd.The �rst part of this a
tion represents the topologi
al BF theory for the SO(3, 1) group.The Rab is the 
urvature 2-form, a �eld strength �F � for the SO(3, 1) 
onne
tion 1-



291form ωab. The Bab is the Lagrange multiplier 2-form. The se
ond part of the a
tion isthe Plebanski 
onstraint, featuring Bab and the 0-form Lagrange multiplier φabcd. Thepurpose of the 
onstraint is to enfor
e the Bab to be a simple 2-form (i.e. an exteriorprodu
t of two 1-forms). This 
onstraint is therefore 
alled �simpli
ity 
onstraint�, andit 
an be shown that the simpli
ity requirement of the Bab �eld is enough to 
onvert thetopologi
al BF theory into General Relativity. The fa
t that Bab is simple gives rise tonontrivial degrees of freedom in the theory, redu
ing the equation of motion for ωab fromRiemann-�at to Ri

i-�at.The se
ond step is the quantization of the topologi
al BF theory. This 
an be donein a rigorous way by employing the methods of topologi
al quantum �eld theory. One�rst dis
retizes spa
etime into 4-simpli
es, motivated by the stru
ture of spa
e in the
anoni
al LQG, and rewrites the BF a
tion in the form
∫
Bab ∧Rab discr.−→

∑

△
B△R△,where the sum goes over all triangles in the triangulation. Then one de�nes a topologi
alinvariant

Z ≡
∫

Dω
∫

DB exp
(
i
∑

△
B△R△

)
=

=
∑

Λ

∏

f

A2(Λf )
∏

v

A4(Λv).Here Λ are the irredu
ible representations of SO(3, 1), labelling the fa
es f , edges e andverti
es v of the Poin
aré dual latti
e 
orresponding to the triangulation. The 
olored
2-
omplex dual to the spa
etime triangulation is 
alled a spin foam. The amplitudes
A2(Λ) and A4(Λ) are determined su
h that Z is in fa
t a topologi
al invariant � thetotal expression must not depend on the parti
ular 
hoi
e of the spa
etime triangulation.In that way one arrives at the TQFT 
orresponding to the BF theory for the SO(3, 1)group, 
ommonly 
alled the Ooguri spin foam model. Of 
ourse, the invariant Z may be(and a
tually is) badly divergent, but that is not important at this stage, sin
e we areonly interested in the stru
ture of the path integral.The last step in the quantization pro
edure is to enfor
e the simpli
ity 
onstraint onthe BF path integral at the quantum level. The exa
t te
hnique for this is quite involved[5, 6℄, but the bottomline is that one proje
ts the SO(3, 1) irredu
ible representations
Λ to the SU(2) representations present in the 
anoni
al LQG formalism, in order toobtain the same stru
ture of the Hilbert spa
e on the spin foam boundary. The resultingtheory is not topologi
ally invariant, but represents one possible rigorous de�nition forthe theory of quantum gravity. The most advan
ed spin foam model in this respe
t isthe EPRL/FK model, developed independently by two resear
h groups [5, 6℄.The main feature of spin foam models is that they 
orre
t some drawba
ks of the
anoni
al theory, primarily the dynami
al se
tor is more under 
ontrol. In addition,there remains a 
ertain ambiguity in the 
hoi
e of the amplitudes A2 and A4. This 
an



292be 
onveniently utilised to rede�ne the model su
h that it be
omes IR-�nite and tohave a 
orre
t semi
lassi
al limit [7, 8℄. One 
an also employ standard QFT methodsto 
al
ulate the e�e
tive a
tion for the model in the semi
lassi
al limit, whi
h opensa possibility to expli
itly determine the 
oupling 
onstants from perturbative quantumgravity. Unfortunately, the spin foam models introdu
e their own set of problems. Asidefrom the �unusual� properties like fuziness of geometry at the Plan
k s
ale, all spinfoam models su�er from two major handi
aps. The �rst is related to the fa
t that, inaddition to the good semi
lassi
al limit, all models have additional semi
lassi
al limits,whi
h do not give rise to the standard GR, but to the so-
alled area-Regge geometry.Sin
e these di�erent 
lassi
al limits are not observed in experiments, one needs someadditional me
hanism to supress su
h solutions. However, so far no me
hanism 
ould be
onstru
ted to deal with this problem.The se
ond handi
ap is related to the inability of the spin foam models to 
ouplematter �elds to gravity. Namely, the basi
 geometri
 variables whi
h are employed indes
ription of spa
etime geometry are areas and volumes of spa
e, but not lengths. Thissituation makes it extremely 
ompli
ated (and in the 
ase of massive fermioni
 mattereven impossible) to in
orporate matter �elds into the spin foam model. Even if doable(see [9℄ for the massless fermion 
oupling), the resulting theory would be too 
ompli
atedto be useful for any 
al
ulation.As it turns out, both of these handi
aps have a 
ommon origin � the edge lengths inthe triangulation are not well-de�ned at the quantum level. This is itself a 
onsequen
eof the 
hoi
e of spin network states as basi
 degrees of freedom in the 
anoni
al LQG �the 
hoi
e whi
h emphasizes the spin 
onne
tion ωab, while entirely ignoring the tetrad�elds ea. At the level of spin foam models, it is easy to see that the Plebanski 
onstraintwas purposefully designed to require the simpli
ity of Bab, while avoiding to expli
itlystate that (the dual of) Bab is the produ
t of two tetrad 1-forms. The reason for thisis that the tetrad �elds do not appear as variables in the topologi
al BF se
tor of thetheory, whi
h is being used for the de�nition of the path integral.In the remainder of this paper we will present a novel way to address this maindi�
ulty, and to introdu
e tetrad �elds expli
itly in the topologi
al se
tor of the theory.However, in order to do this, it is important to introdu
e some mathemati
al 
on
eptswhi
h provide the ba
kground formalism for the new model.3 Poin
aré 2-groupWe begin by giving a very brief review of the so-
alled 
ategori�
ation ladder, an im-portant and a
tive resear
h topi
 in 
ategory theory. We shall not attempt at any rigor,leaving out most of the details, whi
h 
an be found for example in [10℄ and referen
estherein.In the bran
h of mathemati
s 
alled 
ategory theory, one de�nes a stru
ture 
alleda 
ategory as a set of obje
ts and a set of morphisms between those obje
ts, satisfyingsome basi
 axioms. Su
h a stru
ture is fairly general and does not have many interesting



293properties itself. However, this generality allows one to use it for all sorts of purposes.For example, one 
an de�ne the usual stru
ture of a group as a 
ategory whi
h hasonly one obje
t, while all morphisms (mapping the obje
t onto itself) are invertible.The 
omposition rules for the morphisms 
an be 
hosen to be the group multipli
ation,thereby providing an isomorphism between a given group and the 
orresponding
ategory with one element.The �rst step in the 
ategori�
ation ladder is to introdu
e the 
on
ept of a 2-
ategory.A 2-
ategory 
onsists of a set of obje
ts, a set of morphisms and a set of 2-morphisms,maps between morphisms. Intuitively, if a 
ategory 
an be represented by a linear graph ofdots (obje
ts) and arrows 
onne
ting them (morphisms), a 2-
ategory 
an be representedby a planar graph, 
onsisting of dots (objee
ts), arrows 
onne
ting them (morphisms)and �surfa
e arrows� mapping one arrow into another (see [10℄ for details and pi
tures).The main point is that the dimensionality of the graph has been raised by one. The 
ate-gori�
ation ladder 
an 
ontinue by introdu
ing a 3-
ategory (or in general an n-
ategory)by a similar pro
ess, leading to 3-dimensional (in general n-dimensional) graphs.In analogy with a group, one 
an then de�ne a 2-group, as a 2-
ategory whi
h hasonly one element, while all morphisms and 2-morphisms are invertible. A 2-group is a
ategori
al generalization of a group, and is not a group itself. One 
an prove that any 2-group is equivalent to a 
rossed module, a stru
ture that has been studied independentlyby mathemati
ians before the idea of the 
ategori�
ation ladder has even been introdu
ed.A 
rossed module is a quadruple (G,H, ∂, ⊲). This is a pair of groups G and H , su
h that
∂ : H → G is a homomorphism and ⊲ : G ×H → H is an a
tion of G on H su
h that
ertain axioms are satis�ed, whi
h turn out to be dire
tly related to the stru
ture of a
2-
ategory, see [10℄. The elements of G represent the 1-morphisms, while the elements ofthe semidire
t produ
t G ⋉ H represent the 2-morphisms. The 
anoni
al example of a
2-group relevant for physi
s is the Poin
aré 2-group, where G = SO(3, 1), H = r4, ∂ isa trivial homomorphism and ⊲ is the usual a
tion of the Lorentz transformations on the
r4 spa
e. The Lorentz group is the group of morphisms, while the usual Poin
aré groupis the group of 2-morphisms.The main feature of the whole 2-group formalism is that one 
an generalize the
on
ept of a holonomy along a line to its two-dimensional analog � a surfa
e holonomy.The initial interest in this 
ame from string theory. A point-parti
le travels along a worldline in spa
etime, and one is naturally led to the 
on
ept of a parallel transport along agiven line. String theory promotes the point parti
le into a one-dimensional obje
t � astring � whi
h then travels along a world surfa
e in spa
etime. Thus one would like tohave a 
on
ept of a parallel transport along a given surfa
e.One of the main aims of the 2-
ategory and 2-group formalism is to introdu
e andformalize this 
on
ept.Given the strong 
ategori
al relationship between groups and 2-groups, one 
an 
on-stru
t a gauge theory on a 4-manifold M based on a 
rossed module (G,H, ∂, ⊲) of Liegroups by using 1-forms A, whi
h take values in the Lie algebra g of G, and 2-forms β,



294whi
h take values in the Lie algebra h of H [11,12℄. The forms A and β transform underthe usual gauge transformations g : M → G as
A→ g−1Ag + g−1dg , β → g−1 ⊲ β ,while the gauge transformations generated by H are given by

A→ A + ∂η , β → β + dη +A ∧⊲ η + η ∧ η ,where η is a one-form taking values in h, see [12℄. When the group H is Abelian, whi
hhappens in the Poin
aré 2-group 
ase, then the η ∧ η term vanishes, and one obtains thegauge transformations given in [11℄.The pair (A, β) represents a 2-
onne
tion on a 2-�ber bundle asso
iated to the 2-Liegroup (G,H) and the manifold M. The 
orresponding 
urvature forms are given by
F = dA+A ∧A− ∂β , G = dβ +A ∧⊲ β ,and they transform as

F → g−1Fg , G → g−1 ⊲ G ,under the usual gauge transformations, while
F → F , G → G + F ∧⊲ η ,under the H-gauge transformations.One 
an introdu
e a natural topologi
al gauge theory determined by the vanishingof the 2-
urvature

F = 0 , G = 0 .These equations 
an be obtained from the a
tion
S =

∫
〈B ∧ F〉g + 〈C ∧ G〉h ,where B is a Lagrange multiplier 2-form taking values in g, C is a Lagrange multiplier

1-form taking values in h, 〈 , 〉g is a G-invariant nondegenerate bilinear form in g and
〈 , 〉h is a G-invariant nondegenerate bilinear form in h. This a
tion is 
alled BFCGa
tion, in analogy with the BF theory a
tion. The gauge transformations of the Lagrangemultiplier �elds are given by

B → g−1Bg , C 7→ g−1 ⊲ C ,for the usual gauge transformations, while
B → B − [C, η] , C 7→ C ,for the H-gauge transformations.



295Let us now examine the 
ase of the Poin
aré 2-group. In this 
ase A = ωabJab,
β = βaPa, where a, b ∈ {0, 1, 2, 3}, Jab are the generators of the Lorentz group while Paare the generators of the translation group r4. Consequently

F = (dωab + ωa
c ∧ ωcb)Jab = RabJab,

G =
(
dβa + ωa

b ∧ βb
)
Pa = (∇βa)Pa.The G-gauge transformations are the lo
al Lorentz rotations

ω → g−1ωg + g−1dg , β → g−1 ⊲ β ,while the H-gauge transformations are the lo
al translations
δεω

ab = 0 , δεβ
a = dεa + ωa

b ∧ εb ,where η = εaPa.The BFCG a
tion then be
omes
S =

∫

M

(
Bab ∧Rab + Ca ∧ ∇βa

)
,where

δεB = 0 , δεC = 0 .At this point a very important observation is in order. The transformation properties ofthe 1-form Ca are the same as the transformation properties of the tetrad 1-form ea underthe lo
al Lorentz and the di�eomorphism transformations. In addition, the equation ofmotion for Ca is ∇Ca = 0, just like the no-torsion equation for the tetrad, ∇ea = 0.Based on this, we identify the Lagrange multiplier Ca with the tetrad �eld ea, and writethe a
tion in the form
S =

∫

M

(
Bab ∧Rab + ea ∧ ∇βa

)
.In this way one 
an 
onstru
t a 
ategori
al generalization of the topologi
al BFa
tion. The new a
tion is again topologi
al, but more ri
h in stru
ture, sin
e the tetrad�elds are expli
itly present. In addition, the 2-group formalism provides a framework to
onstru
t a topologi
al quantum �eld theory from this a
tion, in analogy with the BF
ase. This provides us with the ne
essary tools to 
onstru
t a 
ategori
al generalizationof a spin foam model, based on the BFCG a
tion instead of the BF a
tion. The expli
itpresen
e of the tetrads should help us resolve the two handi
aps of spin foam modelsdis
ussed in se
tion 2.4 The Spin
ube ModelThe �rst step in the 
onstru
tion of the new model is to write the a
tion for General Rel-ativity, starting from the BFCG a
tion. In order to do this, all we need is the simpli
ity
onstraint,

Bab = εabcd e
c ∧ ed ,



296whi
h 
an now be added into the a
tion as it stands, as opposed to the BF 
ase wherethe Plebanski 
onstraint had to be introdu
ed due to the absen
e of the tetrads ea in the
BF a
tion. Therefore, one 
an write the 
onstrained BFCG a
tion in the form

S =

∫

M

[
Bab ∧Rab + ea ∧ ∇βa−

− φab ∧
(
Bab − εabcdec ∧ ed

) ]
,

(1)where φab is an additional Lagrange multiplier 2-form �eld, introdu
ed in order to enfor
ethe simpli
ity 
onstraint.The equations of motion are obtained by varying S with respe
t to B, e, ω, β and φ,respe
tively, to give:
Rab − φab = 0 ,
∇βa + 2εabcdφ

bc ∧ ed = 0 ,
∇Bab − e[a ∧ βb] = 0 ,
∇ea = 0 ,
Bab − εabcde

c ∧ ed = 0 .With the usual assumption that the tetrad �elds are nondegenerate, these equations 
anbe reworked into an equivalent form:
φab = Rab, Bab = εabcde

c ∧ ed, βa = 0,

∇ea = 0 , εabcdR
bc ∧ ed = 0 .The �rst three equations determine βa and the multipliers Bab and φab in terms of eaand ωab. The fourth equation is the no-torsion equation, whi
h determines the 
onne
tion

ωab to be the Levi-Civita 
onne
tion (a fun
tion of the tetrads ea). The last equationis nothing but the Einstein �eld equation for the only remaining �eld ea. Thus we seethat the a
tion (1) is 
lassi
ally equivalent to General Relativity. More pre
isely, it isequivalent to the Einstein-Cartan theory,
SEC =

∫

M
εabcde

a ∧ eb ∧Rcd ,sin
e the torsion is equal to zero as an equation of motion rather than by de�nition.Given the new a
tion for General Relativity, we 
an pro
eed with the 
ovariantquantization in analogy with the spin foam models. The a
tion has the topologi
al termand the 
onstraint term, so as a �rst step we 
onstru
t a topologi
al quantum �eld theoryby de�ning the path integral for the BFCG part of the a
tion. In the se
ond step, weenfor
e the 
onstraint term by requiring a suitable restri
tion in the path integral of thetopologi
al theory.One begins by triangulating spa
etime into 4-simpli
es, and rewriting the topologi
alpart of the a
tion in the form
∑

△
B△R△ +

∑

l

el(∇β)l,



297where the �rst sum goes over all triangles and the se
ond goes over all edges in thetriangulation of the spa
etime manifold. Then one 
onstru
ts a topologi
ally invariantpath integral in the form (see [13℄ for the details of the 
onstru
tion)
Z ≡

∫
Dω

∫
DB

∫
De

∫
Dβ

exp
(
i
∑

△
B△R△ + i

∑

l

el(∇β)l
)
=

=
∑

Λ

∏

p

A1(Λp)
∏

f

A2(Λf)
∏

v

A4(Λv).

(2)
The labels Λ = (Lp,mf), where Lp ∈ r+

0 andmf ∈ Z, are now irredu
ible representationsof the Poin
aré 2-group, and in addition to verti
es v and fa
es f of the Poin
aré duallatti
e, we also take the produ
t over all the polyhedra p, sin
e they are dual to the edgesof the triangulation and naturally appear in the 
onstru
tion due to the presen
e of the
e ∧ ∇β term in the BFCG a
tion. The amplitudes A1(Λ), A2(Λ) and A4(Λ) are 
hosenso that Z does not 
hange under the a
tion of the Pa
hner moves, whi
h guarantees itsindependen
e of the triangulation. The polyhedra are 
olored with Lp, whi
h have theinterpretation as lengths of triangulation edges, while fa
es are 
olored with mf , whi
hhave the interpretation as areas of the triangles in the triangulation. In the topologi
altheory, edge lengths and triangle areas are independent of ea
h other.Note that the path integral is not de�ned over a 
olored 2-
omplex (the spinfoam),but rather over a 
olored 3-
omplex (
alled spin
ube).Finally, we 
an impose the simpli
ity 
onstraint, in order to turn the topologi
al pathintegral into a realisti
 model for quantum gravity. Based on the geometri
 interpretationof the variables, the 
onstraint a
tually says that a very natural requirement should beenfor
ed � the triangle areas must be 
ompatible with the 
orresponding edge lengths.This 
an be formalized in the requirement

|mf |l2P = Af (L), ∀fwhere Af (L) is the Heron formula for the triangle area in terms of its edges. The Plan
klength appears naturally in order to balan
e the dimensions of the two sides of theequation. As a last step, one rede�nes the amplitudes A1, A2 and A4 in order to renderthe theory IR-�nite, as well as to enfor
e the 
orre
t semi
lassi
al limit, in a way similarto the spinfoam models.Note that imposing this 
onstraint leaves only edge lengths as independent variablesin the theory, so that the �area-Regge� problem present in spinfoam models is resolvedautomati
ally. In addition, the edge length variables allow for a 
ompletely straightfor-ward 
oupling of matter �elds to the spin
ube model. Namely, at the level of the 
lassi
al



298theory, one 
an introdu
e fermions via the a
tion
S =

∫ [
Bab ∧Rab + ea ∧ ∇βa − φab ∧

(
Bab − εabcdec ∧ ed

) ]
+

+ iκ1

∫
εabcd e

a ∧ eb ∧ ec ∧ ψ̄
[
γd

↔
d + {ω, γd}+ im

2
ed
]
ψ+

+ iκ2

∫
εabcde

a ∧ eb ∧ βc ψ̄γ5γ
dψ ,

(3)where ω = ωab[γ
a, γb]/8, κ1 = 8πl2P/3 and κ2 = −2πl2P . The �rst term is the 
onstrained

BFCG a
tion, while the se
ond and third terms introdu
e fermion 
oupling whi
h resultsin the same equations of motion as in the ordinary Einstein-Cartan theory with fermions.The quantization pro
edure of the a
tion (3) is essentially the same as the one withoutfermions. The only di�eren
e is in the fa
t that the vertex amplitude A4 will 
hange tore�e
t the presen
e of the fermioni
 matter, as
A4 → A4 exp

[
iS

(ferm)
R (L,ψ)

]
,where S(ferm)

R is the Regge dis
retized a
tion of a fermion �eld ψ 
oupled to gravity. Theexpressions whi
h appear in S(ferm)
R 
an be easily obtained, in 
ontrast to the EPRL/FKmodel 
ase, where the expression for the 4-simplex volume is impossible to de�ne uniquelyin terms of the spin foam variables [9℄.Similarly to (3), one 
an also 
ouple other matter �elds to (1) in a 
ompletely straight-forward way, in
luding gauge and s
alar �elds, the 
osmologi
al 
onstant, the Holst term,and so on.5 Con
lusionsThe proposed 2-group reformulation of GR 
an be used to obtain a 
ategori
al laddergeneralization of Loop Quantum Gravity. The advantage of this generalization is that theedge lengths of a triangulation be
ome the basi
 dynami
al variables. This will fa
ilitatethe 
onstru
tion of the path integral su
h that the 
lassi
al limit of the 
orrespondingquantum theory is GR and the 
oupling of matter will be mu
h easier to a

omplish.The 
ategori
al nature of the theory implies that the edge labels of a spa
etimetriangulation should be the 2-group irredu
ible representations on a 2-Hilbert spa
e.Note that this is not unique, sin
e one 
an also use the 
ategory of 
hain 
omplexesof ve
tor spa
es in order to de�ne the representations, see [12, 14℄. The stru
ture of the
hain-
omplex representations is di�erent from the 2-Hilbert spa
e representations, whi
hmeans that 
hain-
omplex representation theory de�nes an alternative quantization ofGR. Hen
e it would be interesting to develop the 
hain-
omplex representation theory ofthe Poin
aré 2-group.The physi
al signi�
an
e of 2-Hilbert spa
e representations 
ould be better under-stood by performing a 
anoni
al quantization of the a
tion (1).



299As far as the 
onstru
tion of 4-manifold invariants based on the BFCG state sum is
on
erned, one would have to regularize the topologi
al state sum/integral based on theamplitude (2) su
h that the triangulation independen
e is preserved. One way to do it isto try to implement a gauge-�xing pro
edure, see [15℄. Another way is to �nd a quantumgroup regularization, sin
e there are strong indi
ations that 
ategori�ed quantum groupsand their representations will be important for the 
onstru
tion of 4-manifold invariants[16℄. Hen
e one 
an try to �nd a 
rossed module of Hopf algebras whi
h is a deformationof the Poin
aré 2-group, and then try to �nd an appropriate 2-
ategory of representationswhi
h will give a �nite topologi
al state sum.Referen
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