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We give a brief review of the problem of quantum gravity. After the discus-
sion of the nonrenormalizability of general relativity, we briefly mention the
main research directions which aim to resolve this problem. Our attention
then focuses on the approach of Loop Quantum Gravity, specifically spin-
foam models. These models have some issues concerning the semiclassical
limit and coupling of matter fields. The recent developments in category
theory provide us with the necessary formalism to introduce a new action
for general relativity and perform covariant quantization so that the issues
of spinfoam models are successfully resolved.
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1 Introduction

It is well known that Einstein’s theory of General Relativity is not straightforward to
quantize. This is easily seen from the fact that GR is not perturbatively renormaliz-
able. Simply put, one can attempt to qunatize GR as an ordinary spin-two field in flat
Minkowski spacetime, in the following way (for a nice review see [1]). Starting from the
usual Einstein-Hilbert action

SEn = /d4x\/_ng,

one rewrites the metric tensor g,, as the flat Minkowski metric 7,, and the spin-two
field h,,, as
Guv = M + huw

and substitutes it into the action, rewriting it in terms of the new variable h,,, . Thereby
one obtains

Sgy = /d4x hyu OR* 4 (gauge fixing terms)+
+(self — interaction terms).

The D’Alambertian operator is defined in flat Minkowski space, O = #*¥0,0,. From
here one can proceed to perform the standard field theory quantization in the naive
way — first formulate the free quantum field theory, and then introduce interactions
perturbatively.

However, very soon one is bound to face the difficulty of nonrenormalizability of
this theory. The tree-level Feynman diagrams are finite, the one-loop divergences can
be removed by wavefunction renormalization, but at the two-loop level a Lagrangian
counterterm of the form

const

Ly =" R, R"™ . R 05 (e —0)

appears [2], which is nonzero on-shell. Here ¢ = 4 — D is the cutoff parameter from
dimensional regularization scheme. At higher loop levels similar terms involving R*, R®,
etc. terms are also expected to appear, rendering the theory perturbatively nonrenor-
malizable. This means that in order to remove all divergences one needs to introduce at
least one additional coupling constant for each loop level. The infinite number of these
coupling constants implies the loss of predictive power of the theory, since all experiments
doable in principle can only ever fix a finite number of coupling constants. This property
of General Relativity has been known for quite some time, and there are various research
directions which attempt to address this issue. They can be broadly separated into two
classes, by the methodology.

The first class of approaches considers modifying or substituting GR by another
theory, which should preferably be renormalizable. Such attempts have evolved into vast
research directions such as supergravity, string field theory, noncommutative geometry,
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and so on. The goal of each proposed model is to have a renormalizable theory that looks
like GR at least on the length scales which can be tested experimentally, while at the
same time have only a finite number of coupling constants. These coupling constants could
then in principle be used to predict the values of the infinite set of coupling constants
appearing in the perturbative quantum gravity approach.

The second class of approaches is based on the point of view that abandons the renor-

malization paradigm, and essentially gives physical meaning to the cutoff parameters of
some particular regularization scheme. In other words, the assumption is that at some
scale (typically expected to be near the Planck scale) expectation values of the physical
observables will start to depend explicitly on cutoff parameters. This dependence is as-
sumed to be measurable (in principle), rather than being removed by renormalization.
These attempts have also evolved into vast research directions such as loop quantum
gravity, causal dynamical triangulations, causal set theory, etc. The goal of all proposed
models is exactly the same as before — predict some definite values for the infinite num-
ber of coupling constants present in the perturbative quantum gravity. All these research
directions have had limited success, and in the absence of any experimental data relevant
at the Planck scale, none of these directions can be preferred over the others.
In what follows, we shall be mainly concerned with the approach of loop quantum gravity
(for a review see [3]), more specifically spin foam models, and we shall propose one novel
particular model that addresses some serious issues present in all other spin foam models
so far.

In section 2 we shall give a short overview of the status of LQG in general and spin
foam models in particular. We will argue that the main drawbacks of all 4D spin foam
models stem from the fact that tetrad fields are not basic variables of the theory. Section
3 deals with the categorical generalization of the Poincaré group, called the Poincaré
2-group. This will give us the necessary mathematical tools to reformulate the GR action
in a convenient way which includes tetrad fields as basic variables. The analysis of this
new action is then given in section 4, with a sketch of a quantization procedure giving
rise to the so-called spincube model. Section 5 contains conclusions and discussion of the
results.

2 Loop Quantum Gravity
and Spin Foam Models

A detailed review of the Loop Quantum Gravity approach can be found in [3]. Here we
just give some basic properties at an informal level.

The basic idea of LQG is to choose diffeomorphism-invariant quantities as basic de-
grees of freedom for the gravitational field, and then perform a canonical nonperturbative
quantization of gravity in terms of these quantities. The natural candidates for basic vari-
ables turned out to be Wilson loops, and subsequently their generalizations called spin
networks. This choice of variables introduces a natural diffeomorphism-invariant cutoff
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at the Planck length scale [p, thereby rendering the theory UV-finite. The quantization
is performed in the Schrédinger picture, and provides one with a mathematically well-
defined constructions of the kinematical Hilbert space for the theory and some basic
operators for geometric observables such as lengths, areas and volumes of space. Evolu-
tion in time is embodied in the Hamiltonian constraint, corresponding to the Wheeler-de
Witt equation in the LQG setting.

The main features of such canonical approach to quantization are as follows. The the-
ory represents a nonperturbative quantization of GR, and can in principle be applied to
the study of physical systems where gravity is the dominant factor at short distances
such systems include the black hole and cosmological singularities. It gives one a mathe-
matical handle on a well-defined Hilbert space of states for the gravitational field, thereby
giving some insight into the quantum mechanical features of gravity. The natural basis
for the Hilbert space is the set of the spin network states, combinatorial graphs colored
by the irreducible representations of the SU(2) group, and corresponding intertwiners.
Finally, the study of the geometric observables — the length, area and volume opera-
tors — reveals that each of them has a discrete spectrum, giving rise to the geometric
interpretation of the gravitational field wavefunctional, as well as the discrete character
of space.

The theory also has some drawbacks. First, the Hamiltonian constraint is not uniquely
defined, due to the usual ordering problems present in quantum mechanics. Second,
even if one chooses some particular ordering, the Hamiltonian constraint is extremely
complicated and impossible to solve in practice. This severely limits the possibility for
any practical calculations and the study of the dynamics of the theory. As the main
obstacle, the proof of the correct semiclassical limit of the theory is still missing, as well
as any attempt to predict the coupling constants from the perturbative gravity approach.

A way to resolve these drawbacks has been found in the spin foam approach [4]. The
idea is to give up canonical quantization, but instead attempt a covariant, path-integral
quantization of the theory. Building on the results of the canonical approach, one wants
to define the gravitational path-integral

7 = /Dg,“, exp (iSer[guw))

in some way, in order to be able to calculate expectation values of observables, both in
deep quantum regime and the semiclassical regime. This approach tends to give one a
good handle on the dynamics of the theory, in addition to all features of the canonical
approach.

The basic procedure of defining Z goes as follows. One starts from the Plebanski
action for General Relativity,

S = / Bay A R™® 4+ ¢™ B, A B.g.

The first part of this action represents the topological BF theory for the SO(3, 1) group.
The R is the curvature 2-form, a field strength “F” for the SO(3,1) connection 1-
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form w. The B, is the Lagrange multiplier 2-form. The second part of the action is
the Plebanski constraint, featuring B, and the 0-form Lagrange multiplier ¢°¢. The
purpose of the constraint is to enforce the By, to be a simple 2-form (i.e. an exterior
product of two 1-forms). This constraint is therefore called “simplicity constraint”, and
it can be shown that the simplicity requirement of the B, field is enough to convert the
topological BF theory into General Relativity. The fact that B,y is simple gives rise to
nontrivial degrees of freedom in the theory, reducing the equation of motion for w® from
Riemann-flat to Ricci-flat.

The second step is the quantization of the topological BF' theory. This can be done
in a rigorous way by employing the methods of topological quantum field theory. One
first discretizes spacetime into 4-simplices, motivated by the structure of space in the
canonical LQG, and rewrites the BF action in the form

/Bab AR %N BARA,
A

where the sum goes over all triangles in the triangulation. Then one defines a topological

invariant
/Dw/DBexp (iZBARA) _
VAN
S TTA2(Ap) T As(An).
A f v

Here A are the irreducible representations of SO(3, 1), labelling the faces f, edges e and
vertices v of the Poincaré dual lattice corresponding to the triangulation. The colored
2-complex dual to the spacetime triangulation is called a spin foam. The amplitudes
As(A) and A4(A) are determined such that Z is in fact a topological invariant — the
total expression must not depend on the particular choice of the spacetime triangulation.
In that way one arrives at the TQFT corresponding to the BF theory for the SO(3,1)
group, commonly called the Ooguri spin foam model. Of course, the invariant Z may be
(and actually is) badly divergent, but that is not important at this stage, since we are
only interested in the structure of the path integral.

The last step in the quantization procedure is to enforce the simplicity constraint on
the BF path integral at the quantum level. The exact technique for this is quite involved
[5,6], but the bottomline is that one projects the SO(3,1) irreducible representations
A to the SU(2) representations present in the canonical LQG formalism, in order to
obtain the same structure of the Hilbert space on the spin foam boundary. The resulting
theory is not topologically invariant, but represents one possible rigorous definition for
the theory of quantum gravity. The most advanced spin foam model in this respect is
the EPRL/FK model, developed independently by two research groups [5,6].

The main feature of spin foam models is that they correct some drawbacks of the
canonical theory, primarily the dynamical sector is more under control. In addition,
there remains a certain ambiguity in the choice of the amplitudes As and A4. This can

Z
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be conveniently utilised to redefine the model such that it becomes IR-finite and to
have a correct semiclassical limit [7,8]. One can also employ standard QFT methods
to calculate the effective action for the model in the semiclassical limit, which opens
a possibility to explicitly determine the coupling constants from perturbative quantum
gravity. Unfortunately, the spin foam models introduce their own set of problems. Aside
from the “unusual” properties like fuziness of geometry at the Planck scale, all spin
foam models suffer from two major handicaps. The first is related to the fact that, in
addition to the good semiclassical limit, all models have additional semiclassical limits,
which do not give rise to the standard GR, but to the so-called area-Regge geometry.
Since these different classical limits are not observed in experiments, one needs some
additional mechanism to supress such solutions. However, so far no mechanism could be
constructed to deal with this problem.

The second handicap is related to the inability of the spin foam models to couple
matter fields to gravity. Namely, the basic geometric variables which are employed in
description of spacetime geometry are areas and volumes of space, but not lengths. This
situation makes it extremely complicated (and in the case of massive fermionic matter
even impossible) to incorporate matter fields into the spin foam model. Even if doable
(see [9] for the massless fermion coupling), the resulting theory would be too complicated
to be useful for any calculation.

As it turns out, both of these handicaps have a common origin ~ the edge lengths in
the triangulation are not well-defined at the quantum level. This is itself a consequence
of the choice of spin network states as basic degrees of freedom in the canonical LQG —
the choice which emphasizes the spin connection w®, while entirely ignoring the tetrad
fields e®. At the level of spin foam models, it is easy to see that the Plebanski constraint
was purposefully designed to require the simplicity of Bg,, while avoiding to explicitly
state that (the dual of) B,y is the product of two tetrad 1-forms. The reason for this
is that the tetrad fields do not appear as variables in the topological BF' sector of the
theory, which is being used for the definition of the path integral.

In the remainder of this paper we will present a novel way to address this main
difficulty, and to introduce tetrad fields explicitly in the topological sector of the theory.
However, in order to do this, it is important to introduce some mathematical concepts
which provide the background formalism for the new model.

3 Poincaré 2-group

We begin by giving a very brief review of the so-called categorification ladder, an im-
portant and active research topic in category theory. We shall not attempt at any rigor,
leaving out most of the details, which can be found for example in [10] and references
therein.

In the branch of mathematics called category theory, one defines a structure called
a category as a set of objects and a set of morphisms between those objects, satisfying
some basic axioms. Such a structure is fairly general and does not have many interesting
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properties itself. However, this generality allows one to use it for all sorts of purposes.
For example, one can define the usual structure of a group as a category which has
only one object, while all morphisms (mapping the object onto itself) are invertible.
The composition rules for the morphisms can be chosen to be the group multiplication,
thereby providing an isomorphism between a given group and the corresponding
category with one element.

The first step in the categorification ladder is to introduce the concept of a 2-category.
A 2-category consists of a set of objects, a set of morphisms and a set of 2-morphisms,
maps between morphisms. Intuitively, if a category can be represented by a linear graph of
dots (objects) and arrows connecting them (morphisms), a 2-category can be represented
by a planar graph, consisting of dots (objeects), arrows connecting them (morphisms)
and “surface arrows” mapping one arrow into another (see [10] for details and pictures).
The main point is that the dimensionality of the graph has been raised by one. The cate-
gorification ladder can continue by introducing a 3-category (or in general an n-category)
by a similar process, leading to 3-dimensional (in general n-dimensional) graphs.

In analogy with a group, one can then define a 2-group, as a 2-category which has
only one element, while all morphisms and 2-morphisms are invertible. A 2-group is a
categorical generalization of a group, and is not a group itself. One can prove that any 2-
group is equivalent to a crossed module, a structure that has been studied independently
by mathematicians before the idea of the categorification ladder has even been introduced.
A crossed module is a quadruple (G, H, d,1>). This is a pair of groups G and H, such that
0: H — G is a homomorphism and > : G x H — H is an action of G on H such that
certain axioms are satisfied, which turn out to be directly related to the structure of a
2-category, see [10]. The elements of G represent the 1-morphisms, while the elements of
the semidirect product G x H represent the 2-morphisms. The canonical example of a
2-group relevant for physics is the Poincaré 2-group, where G' = SO(3,1), H = r*, J is
a trivial homomorphism and > is the usual action of the Lorentz transformations on the
r space. The Lorentz group is the group of morphisms, while the usual Poincaré group
is the group of 2-morphisms.

The main feature of the whole 2-group formalism is that one can generalize the
concept of a holonomy along a line to its two-dimensional analog — a surface holonomy.
The initial interest in this came from string theory. A point-particle travels along a world
line in spacetime, and one is naturally led to the concept of a parallel transport along a
given line. String theory promotes the point particle into a one-dimensional object — a
string — which then travels along a world surface in spacetime. Thus one would like to
have a concept of a parallel transport along a given surface.

One of the main aims of the 2-category and 2-group formalism is to introduce and
formalize this concept.

Given the strong categorical relationship between groups and 2-groups, one can con-
struct a gauge theory on a 4-manifold M based on a crossed module (G, H,9,>) of Lie
groups by using 1-forms A, which take values in the Lie algebra g of G, and 2-forms 3,
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which take values in the Lie algebra b of H [11,12]. The forms A and § transform under
the usual gauge transformations g : M — G as

A= g 'Ag+ g tdg, B—g > P,
while the gauge transformations generated by H are given by
A=A+ 0y, B—oB+dn+AN n+nAn,

where 7 is a one-form taking values in b, see [12]. When the group H is Abelian, which
happens in the Poincaré 2-group case, then the n A 7 term vanishes, and one obtains the
gauge transformations given in [11].

The pair (4, B) represents a 2-connection on a 2-fiber bundle associated to the 2-Lie
group (G, H) and the manifold M. The corresponding curvature forms are given by

F=dA+ANA-08, G=dB+ AN 3,

and they transform as
F—=g'Fg, G=g'vg,

under the usual gauge transformations, while
F—=F, G=G+FNn,

under the H-gauge transformations.
One can introduce a natural topological gauge theory determined by the vanishing
of the 2-curvature
F=0, G=0.

These equations can be obtained from the action
S:/(BAJ%HC/\Q);,,

where B is a Lagrange multiplier 2-form taking values in g, C' is a Lagrange multiplier
1-form taking values in by, ( , )4 is a G-invariant nondegenerate bilinear form in g and
( , )p is a G-invariant nondegenerate bilinear form in h. This action is called BFCG
action, in analogy with the BF theory action. The gauge transformations of the Lagrange
multiplier fields are given by

B—g'Bg, C—glnC,
for the usual gauge transformations, while
B—B-[Cn, C~C,

for the H-gauge transformations.
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Let us now examine the case of the Poincaré 2-group. In this case A = w™®Jy,
B = p*P,, where a,b € {0,1,2,3}, Ju» are the generators of the Lorentz group while P,
are the generators of the translation group r*. Consequently

F = (dw®+w' Aw®)Jy = R™Ju,
G = (dB*“+wyAB )P, = (VB P,.

The G-gauge transformations are the local Lorentz rotations
w— g lwgtgTldg, B9 ep,

while the H-gauge transformations are the local translations
Sew™ =0, 06.8% =de® +w Aeb,

where n = e?P,.
The BFCG action then becomes

S:/ (B A Rap + Co ANVBY)
M

where

5.B=0, 6.C=0.

At this point a very important observation is in order. The transformation properties of
the 1-form C? are the same as the transformation properties of the tetrad 1-form e® under
the local Lorentz and the diffeomorphism transformations. In addition, the equation of
motion for C'* is VC* = 0, just like the no-torsion equation for the tetrad, Ve* = 0.
Based on this, we identify the Lagrange multiplier C® with the tetrad field e®, and write
the action in the form

S:/ (B A Ry + € AVB,) .
M

In this way one can construct a categorical generalization of the topological BF
action. The new action is again topological, but more rich in structure, since the tetrad
fields are explicitly present. In addition, the 2-group formalism provides a framework to
construct a topological quantum field theory from this action, in analogy with the BF
case. This provides us with the necessary tools to construct a categorical generalization
of a spin foam model, based on the BFCG action instead of the BF action. The explicit
presence of the tetrads should help us resolve the two handicaps of spin foam models
discussed in section 2.

4 The Spincube Model

The first step in the construction of the new model is to write the action for General Rel-
ativity, starting from the BFCG action. In order to do this, all we need is the simplicity
constraint,

Bab = Eabcd e“N ed )
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which can now be added into the action as it stands, as opposed to the BF case where
the Plebanski constraint had to be introduced due to the absence of the tetrads e® in the
BF action. Therefore, one can write the constrained BFCG action in the form

S = / [B“”/\RabJre“AVBf
M (1)

~ Bap A (Bab _ gabedg /\ed)} 7

where ¢4 is an additional Lagrange multiplier 2-form field, introduced in order to enforce
the simplicity constraint.
The equations of motion are obtained by varying S with respect to B, e, w, 8 and ¢,

respectively, to give:

Rab - ¢ab = 07

vﬁa + 25abcd¢bc A ed =0 )

VBap, — €la /\Bb] = Oa

Ve, =0,

Bap — €apeae’ N ed =0.

With the usual assumption that the tetrad fields are nondegenerate, these equations can
be reworked into an equivalent form:

¢ab = Rab, Bab = €abcdec A ed, Ba = 07
Ve® =0, cabed R N el =0.

The first three equations determine $% and the multipliers By, and ¢4, in terms of e®
and w®. The fourth equation is the no-torsion equation, which determines the connection
w® to be the Levi-Civita connection (a function of the tetrads e?). The last equation
is nothing but the Einstein field equation for the only remaining field e®. Thus we see
that the action (1) is classically equivalent to General Relativity. More precisely, it is
equivalent to the Einstein-Cartan theory,

SEc =/ Eabcdea/\6b/\RCd7
M

since the torsion is equal to zero as an equation of motion rather than by definition.

Given the new action for General Relativity, we can proceed with the covariant
quantization in analogy with the spin foam models. The action has the topological term
and the constraint term, so as a first step we construct a topological quantum field theory
by defining the path integral for the BFCG part of the action. In the second step, we
enforce the constraint term by requiring a suitable restriction in the path integral of the
topological theory.

One begins by triangulating spacetime into 4-simplices, and rewriting the topological
part of the action in the form

Z BARA + Z e(VB),
A 7
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where the first sum goes over all triangles and the second goes over all edges in the
triangulation of the spacetime manifold. Then one constructs a topologically invariant
path integral in the form (see [13] for the details of the construction)

/Dw/DB/De/DB
exp (z Z BARA +1 Zel(Vﬁ)l) = @)
A 1
ST A [T 4200 JT As(a).
p f v

A

A

The labels A = (L, my), where L, € rar and my € Z, are now irreducible representations
of the Poincaré 2-group, and in addition to vertices v and faces f of the Poincaré dual
lattice, we also take the product over all the polyhedra p, since they are dual to the edges
of the triangulation and naturally appear in the construction due to the presence of the
e AV term in the BFCG action. The amplitudes A;(A), A3(A) and A4(A) are chosen
so that Z does not change under the action of the Pachner moves, which guarantees its
independence of the triangulation. The polyhedra are colored with L, which have the
interpretation as lengths of triangulation edges, while faces are colored with my, which
have the interpretation as areas of the triangles in the triangulation. In the topological
theory, edge lengths and triangle areas are independent of each other.

Note that the path integral is not defined over a colored 2-complex (the spinfoam),
but rather over a colored 3-complex (called spincube).

Finally, we can impose the simplicity constraint, in order to turn the topological path
integral into a realistic model for quantum gravity. Based on the geometric interpretation
of the variables, the constraint actually says that a very natural requirement should be
enforced — the triangle areas must be compatible with the corresponding edge lengths.
This can be formalized in the requirement

lms|l = Ag(L), Vf

where Ay (L) is the Heron formula for the triangle area in terms of its edges. The Planck
length appears naturally in order to balance the dimensions of the two sides of the
equation. As a last step, one redefines the amplitudes A;, As and A4 in order to render
the theory IR-finite, as well as to enforce the correct semiclassical limit, in a way similar
to the spinfoam models.

Note that imposing this constraint leaves only edge lengths as independent variables
in the theory, so that the “area-Regge” problem present in spinfoam models is resolved
automatically. In addition, the edge length variables allow for a completely straightfor-
ward coupling of matter fields to the spincube model. Namely, at the level of the classical
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theory, one can introduce fermions via the action

s = / [Bab A Rap + € AV By — ¢ap A (B* — e A eq) } -

) _ o i
+m1/€abcdea/\eb/\ec/\w{'yd d +{w, v+ 5

im ed} TRRNE)
+ ik / Eabea€” N e’ A B ysyhap,

where w = wap[7%,7°]/8, k1 = 871%/3 and Ky = —27l%. The first term is the constrained
BFCG action, while the second and third terms introduce fermion coupling which results
in the same equations of motion as in the ordinary Einstein-Cartan theory with fermions.

The quantization procedure of the action (3) is essentially the same as the one without
fermions. The only difference is in the fact that the vertex amplitude A4 will change to
reflect the presence of the fermionic matter, as

Ay — Ay exp [z'sgem(g w)} ,

where Sgerm) is the Regge discretized action of a fermion field ¢ coupled to gravity. The

expressions which appear in Sgerm) can be easily obtained, in contrast to the EPRL/FK
model case, where the expression for the 4-simplex volume is impossible to define uniquely
in terms of the spin foam variables [9].

Similarly to (3), one can also couple other matter fields to (1) in a completely straight-
forward way, including gauge and scalar fields, the cosmological constant, the Holst term,
and so on.

5 Conclusions

The proposed 2-group reformulation of GR can be used to obtain a categorical ladder
generalization of Loop Quantum Gravity. The advantage of this generalization is that the
edge lengths of a triangulation become the basic dynamical variables. This will facilitate
the construction of the path integral such that the classical limit of the corresponding
quantum theory is GR and the coupling of matter will be much easier to accomplish.

The categorical nature of the theory implies that the edge labels of a spacetime
triangulation should be the 2-group irreducible representations on a 2-Hilbert space.
Note that this is not unique, since one can also use the category of chain complexes
of vector spaces in order to define the representations, see [12,14]. The structure of the
chain-complex representations is different from the 2-Hilbert space representations, which
means that chain-complex representation theory defines an alternative quantization of
GR. Hence it would be interesting to develop the chain-complex representation theory of
the Poincaré 2-group.

The physical significance of 2-Hilbert space representations could be better under-
stood by performing a canonical quantization of the action (1).
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As far as the construction of 4-manifold invariants based on the BFCG state sum is
concerned, one would have to regularize the topological state sum/integral based on the
amplitude (2) such that the triangulation independence is preserved. One way to do it is
to try to implement a gauge-fixing procedure, see [15]. Another way is to find a quantum
group regularization, since there are strong indications that categorified quantum groups
and their representations will be important for the construction of 4-manifold invariants
[16]. Hence one can try to find a crossed module of Hopf algebras which is a deformation
of the Poincaré 2-group, and then try to find an appropriate 2-category of representations
which will give a finite topological state sum.
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