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Abstract

In this paper, we consider the motion of extended objects in gravitational field with torsion. Using
multipole formalism, from the assumptions of Poincaré invariance and localization of matter on some
hypersurface, we derive equations of motion for a p-brane, along with appropriate boundary conditions.
Then we analyze the most important cases of particle and string, thereby obtaining some interesting
consequences. Namely, it turns out that the spin of Dirac particle does not couple to spacetime curvature,
and furthermore can be neglected in single-pole approximation. Also, we considered one gross model of a
meson which consists of a Nambu-Goto string with two particles attached to its ends. The model allows
for the derivation of Regge trajectories with a correction due to internal angular momenta of the particles
at the string ends.



Foreword

Determining of the trajectory of bodies moving through space is one of the oldest problems for physics.
Since the time of Newton, one introduces a notion of point particle, then postulates the motion of the
free particle (first Newton’s law), and postulates the equation of dynamics which governs the particle
motion under the influence of external forces (second Newton’s law). A theory dealing with the motion
of particles is usually called mechanics. There are, however, phenomena in Nature which cannot be
successfully described with a model of particles interacting upon each other with forces. Because of that,
a new concept of description has been introduced, where the central object under consideration is the
field, an entity that exists in all points of spacetime and in each of these points has a certain “value”. All
physical phenomena are then described as consequences of the properties and dynamics of a field (one or
more), and one postulates new field equations, which describe the dynamics of each field alone and their
interactions. Theories built in this way are usually called field theories.

Although as a method a field theory is very successful in describing natural phenomena, it turns out
that it is nontrivial to describe motion of particles within its framework, i.e. to derive laws of mechanics
out of field equations. Namely, a field is based on a concept of continuum, and it is not obvious how from
this continuum one should build discrete, pointlike particles that we see in experiments. This problem
can be partially circumvented by introducing a “hybrid” theory that mixes mechanics with a field theory,
containing both fields with their postulates and particles with their. In the process, interaction of the
field with the particle is also postulated, based on experimental data. This kind of construction is not
satisfactory from a conceptual point of view, because one would expect particles not to be introduced
separately, but as some localized configurations of the fields themselves, the so-called “kinks”. In such
setting field equations would in the end determine the dynamics of these kinks, which would open a
possibility to avoid postulating the motion of particles, but rather to derive it from the all-encompassing
field equations.

The need for this kind of approach emerged with the appearance of general theory of relativity, which
describes gravitation as curvature of spacetime continuum. Namely, question of particle motion in an
external gravitational field became nontrivial, because the notion of “uniform straight line motion of free
particle” became undefined since there are no straight lines in curved spacetime. This problem could be
in principle addressed via generalization of the “straight line” notion to a geodesic. But this approach
has limitations, since it can be successfully applied only to Riemann geometry, where such generalization
is unique. Already when one considers more general geometries like Riemann-Cartan, one can find two
characteristic lines — autoparallel and extremal — which can both be considered good candidates for
generalization of the straight line. In such a situation there is ambiguity in the choice of the postulate of
particle motion.

On the other hand, description of particles as kinks in a field theory, besides being aesthetically more
pleasing, does not suffer of these ambiguities. Incidentally, the kink approach should provide for a method
of deriving effective equations of kink motion. This problem was addressed in their time by Einstein,
Infeld, Hoffmann, Mathisson, Papapetrou and others [1, 2, 3, 4, 5, 6, 7]. A consistent, partly systematic
and of course successful solution for the case of Riemann geometry is due to Papapetrou [4], which was
subsequently generalized to the geometries with torsion [8, 9, 10, 11, 12]. Nevertheless, these methods
suffered from the inability to describe the Dirac particle [11, 12], and were not manifestly covariant while
geometric interpretation was quite blur. This situation rendered the method unfeasible for application to



kinks with structure other than pointlike but rather extended — first of all the string, and then branes
in general.

Motivation for the description of strings and branes as kinks in a field theory emerged from yet another
area of physics — the string theory. String theory was initially conceived as an approach to explain meson
resonances in physics of strong interactions, and later in attempts for unification of all interactions and
formulation of “theory of everything”. As one of the first steps in the construction of string theory,
equations of motion of free relativistic bosonic string were postulated [13, 14]. After that (both classical
and quantum) string field theory has been constructed, and within its framework one addressed the
problem of motion of a single string in an external field of all other strings [15, 16, 17, 18]. In a theory
constructed in this way, one encounters an effective symmetric field µν, Kalb-Ramond antisymmetric
field Bµν and the dilaton scalar field Φ, which interact with the string in question. Analysis of equations
of motion and interaction of the string with these fields indicated that the field gµν has something to
do with spacetime curvature, field Bµν with spacetime torsion, while the dilaton field Φ is connected
to spacetime nonmetricity [19, 20, 21, 22, 23]. However, equations of motion for the string have been
essentially postulated, based on some more or less plausible arguments.

This situation indicated the need of a kink-like approach to the problem of string motion within a
field theory framework, namely to generalize the Papapetrou method from particles to extended objects
and employ it to derive effective equations of motion for a general kink with the p-brane shape. Such
generalization is nontrivial but possible [24, 25, 26], and represents the central topic of this paper. The
problem is solved for the general case of a p-brane moving in a D-dimensional spacetime with curvature
and torsion. Of course, in order to clarify the geometric picture and derive the equations of motion in
a manifestly covariant way, it was necessary to invent a completely new mathematical formalism which
could be employed for the purpose of generalizing to the case of extended objects. This new “language”
is called multipole formalism, and we dedicate the first part of this paper to its founding. The second
part represents the application of multipole formalism for derivation of desired equations of motion, while
the third part deals with various examples. One of interesting aspects of geometrically clear picture of
derivation, which actually enforced itself upon the authors, is consisted of successful description of the
Dirac particle case, and some attention will be dedicated to this as well.

The paper is divided in three chapters. First chapter deals with the formalism of multipole approxi-
mations in spaces with curvature and torsion. After a brief recapitulation of Riemann-Cartan geometry
in the first section [27], in the second section we introduce the concept of expanding a function into the
series of derivatives of Dirac δ function, first on an elementary level, and subsequently in the general case
of space with curvature and torsion. Third section is devoted to casting of the δ series into a manifestly
covariant form, which is very important for later analysis. After that, in fourth section we introduce the
concept of multipole approximations via truncation of the δ series at some point. As the most important
special cases, we single out the so called single-pole and pole-dipole approximations to be used later
on. The manifest covariance of the δ series guarantees the truncation to be fully covariant, and thus
multipole approximations properly defined. Fifth section deals with the analysis of symmetries of the
pole-dipole approximation. In addition to spacetime and worldsheet diffeomorphisms, we discover two
extra symmetries. The first of these represents the fact that the manifestly covariant notation there exist
nonphysical variables, while the second is a consequence of the arbitrariness in choice of the hypersurface
around which the δ series is being expanded. The analysis of these symmetries concludes the general
analysis of multipole formalism, and also the first chapter.

The second chapter deals with the application of the δ series in derivation of effective equations
of motion for a p-brane. In the first section we discuss Poincaré invariance of the matter Lagrangian,
based on which one obtains the covariant conservation laws of matter stress–energy and spin tensors. It
turns out that that the antisymmetric components of stress–energy tensor are not independent variables
and that they can be completely eliminated in favor of the symmetric components and spin tensor
components, which leaves us with only one covariant conservation law that connects them. In the second
section we introduce the assumption of matter localization along some hypersurface, and in pole-dipole
approximation we derive effective equations of motion and boundary conditions for a p-brane made of
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scalar matter. Equations of motion are derived in two main steps. First one substitutes the pole-dipole
δ expansion of stress–energy tensor into the covariant conservation law. After appropriate casting into
the suitable form, covariant conservation law breaks into three coupled equations and three boundary
conditions. The second step represents decoupling, i.e. diagonalization of that system of equations,
which is performed by solving all algebraic equations and introducing new, more suitable variables. As
a result, we end up with an equation of motion for a p-brane, equation for the precession of the internal
angular momentum and appropriate boundary conditions. In these equations we are left with a number
of free parameters, which are given physical interpretation in the third section. They are recognized as
the effective (p + 1)-dimensional stress–energy tensor of the p-brane mab, p-dimensional stress–energy
tensor of its boundary N ij , and the internal angular momentum current Lµνa. These variables actually
determine the structure and properties of matter the p-brane is made of. Armed with this knowledge, in
fourth section we concentrate on the derivation of equations of motion for matter with nonzero spin in
Riemann-Cartan spacetime. First we formulate the pole-dipole approximation for the stress–energy and
spin tensors, and then we derive the equation of motion for a p-brane, an equation of angular momentum
precession and appropriate boundary conditions, similar in procedure to previous two sections. These
equations represent the main result of the paper. Along with other so far discussed free parameters, in
these equations appears the current of the spin angular momentum, and they are all coupled not only
to external curvature, but also to external torsion field. The section ends with the discussion of the
very important case of single-pole approximation, where orbital angular momentum is completely absent,
while the spin angular momentum remains present. In the process some restrictions on spin currents
arise and reduce the number of free parameters in the theory. These will play a very important role in
the analysis of Dirac matter.

Third chapter is devoted to examples. In the first section we discuss the case of 0-brane, i.e. the parti-
cle. We analyze the motion of the particle in pole-dipole approximation and demonstrate the connection
between the second extra symmetry and the choice of center-of-mass line. Then we turn to the motion of
the particle with nonzero spin in the single-pole approximation, and discuss the very important special
case of Dirac point particle, i.e. matter with totally antisymmetric spin tensor. It turns out that the
interaction of spin with spacetime curvature disappears, while all but the axial component of the torsion
also decouple. The precession equation is reduced to an algebraic equation for the spin and contorsion,
which represents a very strange result and suggests that maybe the spin of the Dirac particle is negligible
in single-pole approximation. In order to examine this possibility, we construct one concrete model for
the Dirac particle as a wave-packet in Minkowski spacetime, and then in the single-pole limit we demon-
strate that the spin can really be considered negligible. As a result of this it turns out that the Dirac
point particle travels along a geodesic line just as a scalar particle, without coupling to spacetime torsion.
Based on this analysis, we formulate a criterion to check if the spin of the given matter configuration can
be considered negligible in single-pole approximation. This ends the analysis of the particle case. The
second section deals with the case of 1-brane, i.e. the string. First we demonstrate that the equations of
motion contain the special case of Nambu-Goto string, along with Neumann boundary conditions. Since
it has no spin, the Nambu-Goto string does not feel the presence of torsion, while it feels the presence of
curvature only through Christoffel connection, so the equations of motion turn out to be familiar extremal
surface equations. The next short example deals with a massive rod at rest while rotating around its
longitudinal axis. It is demonstrated that equations of motion are satisfied if effective stress–energy tensor
and angular momentum of the rod are conserved, while there is no energy nor angular momentum flow
through the rod endpoints. Next, we analyze one more complicated system consisted of a Nambu-Goto
string with two massive particles with nonzero internal angular momentum attached to its ends. Such a
system represents one elementary model of a meson, where quarks are approximated with two rotating
particles, while the gluon field connecting them is approximated with a Nambu-Goto string. Equations of
motion are explicitly solved for one concrete configuration where the string lies along a straight line and
together with the particles rotates uniformly around its center. From the expression for total energy and
total angular momentum of this system one derives the law of Regge trajectories, along with a correction
coming from internal angular momenta of two particles. Finally, we analyze the single-pole case with
the Dirac particles at the ends, where this correction is seen to vanish due to negligibility of spin in this
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approximation.
At the end we give final remarks, recapitulate the results and discuss possible topics for further

research.

I wish to express my gratitude to my mentor, Prof. dr Milovan Vasilić, for the guidance and help in
all aspects of writing this paper, from the choice of the theme over considerations of conceptual issues to
advice of technical character.

The conventions of the paper are the following. Greek indices from the middle of the alphabet, µ, ν, . . . ,
are spacetime indices and take values 0, 1, . . . , D − 1. Greek beginning-alphabet indices, α, β, . . . , take
only spacelike values 1, 2, . . . , D − 1. Latin beginning-alphabet indices, a, b, c, . . . , are worldsheet indices
of the p-brane, and take values 0, 1, . . . , p. Latin middle-alphabet indices, i, j, k, . . . , are the indices of the
worldsheet boundary and take values 0, 1, . . . , p − 1. Spacetime, worldsheet and boundary coordinates
are denoted respectively as xµ, ξa and λi, while appropriate metric tensors are denoted as gµν(x), γab(ξ)
and hij(λ). Their signatures are diag[−1,+1, . . . ,+1]. We shall be mainly interested in the physically
relevant case of D = 4 spacetime dimensions.
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Chapter 1

MULTIPOLE FORMALISM

Multipole formalism basically represents the description of a given function using its multipoles, which
appear as coefficients in the series of derivatives of the Dirac δ function. This chapter is dedicated to
the formulation and analysis of some general properties of the δ series, with the emphasis on the case
where the target space has Riemann-Cartan structure. This is why we start this chapter with a short
recapitulation of geometric properties of Riemann-Cartan spaces. After that we shall deal with the
definition and basic properties of the δ series, define multipole approximations and consider symmetries
that the multipoles exhibit.

1.1 Riemann-Cartan geometry

Let us begin with a short recapitulation of the most important notions in Riemann-Cartan geometry
[27]. This geometry is the one where one independently defines the rule for calculating the distance
between points and the rule for parallel transport of a vector from one point to another. Information
about those two operations is encoded in the metric tensor, gµν(x), and connection coefficients, Γλµν(x).
The metric tensor enters in the expression for the “squared line element”,

ds2 = gµν(x)dxµdxν ,

while connection coefficients enter the definition of covariant derivative

Dνv
µ ≡ ∂νvµ + Γµλνv

λ

and are not necessarily symmetric with respect to two lower indices. In addition to this, in Riemann-
Cartan geometry one enforces the metricity condition

Dλgµν = 0,

which implies that the connection can be uniquely split into the Levi-Civita connection and the contorsion
tensor:

Γλµν =
{
λ
µν

}
+Kλ

µν ,
{
λ
µν

}
≡ 1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν) . (1.1)

Basic geometric properties of these kind of spaces are characterized with curvature and torsion tensors:

Rµνλρ ≡ ∂λΓµνρ − ∂ρΓµνλ + ΓµσλΓ
σ
νρ − ΓµσρΓ

σ
νλ, Tλµν ≡ Γλνµ − Γλµν .

These satisfy two Bianchi identities,

DµT
λ
νσ + TλρσT

ρ
µν −Rλµνσ + cp(µνσ) = 0,

1



CHAPTER 1. MULTIPOLE FORMALISM 2

DλRρτµν + TσλµRρτ σν + cp(λµν) = 0,

where cp() denotes cyclic permutations of appropriate indices. There is a bijection between the torsion
and contorsion tensors,

Tλµν = Kλ
νµ −Kλ

µν , Kλ
µν = −1

2

(
Tλµν + Tνµ

λ + Tµν
λ
)
,

so it does not matter which of the two we use, since they both contain the same information.
In addition to these tensors, it is useful to introduce also the Riemann covariant derivative and the

Riemann curvature tensor:

∇µ ≡ Dµ

∣∣∣
Γ→{}

, Rµνλρ ≡ Rµνλρ
∣∣∣
Γ→{}

.

Clearly, the Riemann derivative also satisfies the metricity condition, ∇λgµν = 0. Since there is a relation

between the full connection Γλµν and the Levi-Civita connection
{
λ
µν

}
, there is an appropriate relation

between the two curvature tensors,

Rµνλρ = Rµνλρ + 2∇[λK
µ
νρ] + 2Kµ

σ[λK
σ
νρ],

where the indices in square brackets are assumed to be antisymmetrized. Also, the Riemann curvature
tensor satisfies appropriate Bianchi identities:

Rλµνσ + cp(µνσ) = 0, ∇λRρσµν + cp(λµν) = 0.

After we have introduced all important geometric notions and fixed the conventions, we turn to the
multipole formalism in this type of geometry. The first step represents the expansion in the series of
derivatives of Dirac δ function.

1.2 Series of derivatives of δ function

Let us discuss first the very idea of the δ series in its most basic one-dimensional case. Let V : R→ R
be some given function, and let z ∈ R be some point. Then, if for every n ∈ N0 there exists an integral

bn ≡
(−1)n

n!

∫
R
dx (x− z)nV (x)

(the so-called n-th moment of the function V ), one can define the expansion of the function V into series
of derivatives of the δ function around the point z, as:

V (x) =
∑
n∈N0

bn
dn

dxn
δ(x− z). (1.2)

The equality can be easily checked by multiplying with some power of x and integrating term by term.
Consider a simple example. As a function V choose a Gaussian function, V (x) = e−x

2

, and expand it
into the δ series around the point z = 0. Calculating the coefficients bn and substituting them into (1.2)
we obtain:

e−x
2

=
∑
n∈N0

√
π

4nn!

d2n

dx2n
δ(x) =

√
πδ(x) +

√
π

4
δ′′(x) +

√
π

32
δ′′′′(x) +

√
π

384
δ(6)(x) + . . .

We see that in the series only even derivatives of the δ function appear, since the Gaussian is an even
function, and also that every coefficient multiplying the higher derivative is smaller than previous ones.
This is a consequence of the fact that the Gaussian is “localized” precisely around the point z = 0 with
respect to which we chose to perform the expansion. If we had chosen some other point, the coefficients
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would be different and would not form a descending series. This property is clear also from a geometrical
standpoint, because if we observe a Gaussian “from a distance”, it will be more and more similar to the
single δ function precisely at the point z = 0.

These results can be generalized to the case of D-dimensional Riemann-Cartan spacetime. Define some
(p+1)-dimensional hypersurfaceM in spacetime, described via parametric equations xµ = zµ(ξ), where ξa

are parameters, i.e. coordinates on the hypersurface. Assume that the hypersurface is everywhere regular
and that the coordinates ξa well defined. Also, the surface boundary ∂M is described via parametric
equations ξa = ζa(λ), where λi are coordinates at the boundary. Index a takes values 0, . . . , p, while i
takes values 0, . . . , p−1. In addition, we shall be interested only in time-unbounded surfaces, i.e. the ones
that have a nontrivial intersection with any and every space section of spacetime. Given that, introduce
the tangent vectors on the surface M and the induced metric tensor:

uµa ≡
∂zµ

∂ξa
, γab ≡ gµν(z)uµau

ν
b .

The induced metric is assumed to be nondegenerate, γ ≡ det(γab) 6= 0, and has Minkowski signature.
Also, introduce the tangent vectors and induced metric on the boundary ∂M:

vai ≡
∂ζa

∂λi
, hij ≡ γab(ζ)vai v

b
j ,

as well as a unit vector na orthogonal to the boundary ∂M which lies in M:

nan
a = 1, nav

a
i ≡ 0.

Vectors vai and na are also spacetime vectors, so we have the relations vµi = vai u
µ
a and nµ = nauµa .

Now consider some tensor field V µν(x), and define its δ series expansion around the surface M as:

V µν(x) =

∫
M
dp+1ξ

√
−γ
[
bµν(ξ)

δ(D)(x− z)√
−g

+ bµνρ(ξ)∇ρ
δ(D)(x− z)√

−g
+ . . .

]
, (1.3)

where g ≡ det(gµν) is the determinant of the spacetime metric, while the derivatives are with respect
to x. For concreteness we have chosen the field V to be a second rank tensor, while all other cases are
analogously treated. Regarding this, note that the b coefficients carry all indices of the field V , and in
addition have extra indices contracted to covariant derivatives.

The series is defined for those fields V for which all moments are finite, i.e. those that are different
from zero in vicinity of some surface and exponentially falling to zero as one moves away from it. If we
choose precisely this surface (or some nearby one) for the expansion into δ series, it is natural to assume
that every next coefficient in the series will be smaller than the previous, as in the Gaussian example.
According to this we introduce the “degree of smallness” of each coefficient:

b ∼ O0, bρ ∼ O1, bρσ ∼ O2, . . . , (1.4)

and define OmOn = Om+n in order to be able to quantify the smallness of the product of variables. This
formalism will later turn out to be very useful.

In regard to the δ series as defined above, it is necessary to comment on the question of the choice of
∇µ over Dµ in the definition. It turns out that the two choices are equivalent, up to a redefinition of the
b coefficients. Indeed, we see that according to relation (1.1), we have for example for a quadruple term:

bµνρσ∇ρ∇σ
δ(D)(x− z)√

−g
= bµνρσDρDσ

δ(D)(x− z)√
−g

+

+ bµνρσKλ
σρDλ

δ(D)(x− z)√
−g

− bµνρσ
(
DλK

λ
σρ

) δ(D)(x− z)√
−g

(here the contorsion and its derivative are evaluated at the point x = z), so a simple regrouping and
redefinition of the b coefficients allows the same δ series to be rewritten using Dµ. All things equal, the
Riemann derivative is simpler to calculate with, so we prefer it and adopt it in the definition of the series.
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1.3 Proof of covariance

Given the expansion (1.3), one can ask the question of transformation law for the b coefficients under
the spacetime diffeomorphisms, i.e. transformations of coordinates x→ x′ = x′(x). It is not obvious that
b’s transform as tensors, and a careful check can even show that they do not. A natural question arises
— is it possible to rewrite the series in a manifestly covariant manner? The answer is affirmative, and to
demonstrate this, first define the functional

V [f ] ≡
∫
dDx
√
−gV µν(x)fµν(x). (1.5)

Here fµν(x) is a test-function which is assumed to have compact support1, so we may commute the
spacetime integrals with integrals over the surface M. Then, after inserting (1.3) and integrating term
by term over spacetime, we write the functional in the form:

V [f ] =

∫
M
dp+1ξ

√
−γ
[
I0(b0f) + I1(b1f) + . . .

]
, (1.6)

where

In(bnf) ≡
∫
dDx
√
−g bµνρ1...ρnfµν(x)∇ρ1 . . .∇ρn

δ(D)(x− z)√
−g

.

In this expression we perform a series of partial integrations, which brings us to

In(bnf) = (−1)n∇ρn . . .∇ρ1
[
bµνρ1...ρnfµν(x)

]∣∣∣
x=z

.

Here the action of the nabla on b is defined as formal notation:

∇λbµ1...µk =
{
µ1

ρλ

}
bρ...µk + · · ·+

{
µk
ρλ

}
bµ1...ρ, (k ∈ N0),

i.e. as if b were a tensor independent of x (although it is not a tensor). Then we employ the chain rule
for differentiation, so we can write symbolically (with indices omitted):

I0(b0f) = b0f(z),
I1(b1f) = − [(∇b1)f + b1∇f ]x=z ,
I2(b2f) =

[
(∇2b2)f + 2(∇b2)(∇f) + b2∇2f

]
x=z

,
...

Finally, introducing these expressions back into (1.6) and grouping the terms with the same derivative of
f we obtain:

V [f ] =

∫
M
dp+1ξ

√
−γ
[
Bµν(ξ)fµν(z) +Bµνρ(ξ) (∇ρfµν)x=z +Bµνρσ(ξ) (∇σ∇ρfµν)x=z + . . .

]
, (1.7)

where the B coefficients have the following structure:

B0 = b0 − ∇b1 + ∇2b2 − ∇3b3 + . . . ,
B1 = − b1 + 2∇b2 − 3∇2b3 + . . . ,
B2 = b2 − 3∇b3 + . . . ,

...

(1.8)

The diagonal structure of this system of equations allows to be solved for b coefficients:

b0 = B0 − ∇B1 + ∇2B2 − ∇3B3 + . . . ,
b1 = − B1 + 2∇B2 − 3∇2B3 + . . . ,
b2 = B2 − 3∇B3 + . . . ,

...

(1.9)

1This assumption does not influence the generality of the result.
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Here one defines the action of the nabla on B coefficients in the same way as on b’s:

∇λBµ1...µk =
{
µ1

ρλ

}
Bρ...µk + · · ·+

{
µk
ρλ

}
Bµ1...ρ.

At this point we have all elements necessary to discuss covariance. First, from (1.7) it follows that
the coefficients B transform as proper tensors on M, i.e. according to the rule

B′µ1...µk(ξ) =

[
∂x′µ1

∂xν1
· · · ∂x

′µk

∂xνk

]
x=z

Bν1...νk(ξ). (1.10)

This follows from the quotient law, since V [f ] is a scalar with respect to spacetime diffeomorphisms,
as is the volume element of the hypersurface M, while fµν is a tensor. The transformation law for b
coefficients can now be read from (1.9), and does not have tensorial character. Also, the action of the
nabla on B’s now becomes a natural action of a covariant derivative to a tensor that does not depend on
x.

Once this is settled, we can rewrite the δ series expansion (1.3) of the field V µν(x) in manifestly
covariant form

V µν(x) =

∫
M
dp+1ξ

√
−γ
[
Bµν(ξ)

δ(D)(x− z)√
−g

−∇ρ
(
Bµνρ(ξ)

δ(D)(x− z)√
−g

)
+ . . .

]
, (1.11)

which is most convenient for further use.

1.4 Multipole approximations

As every other expansion into some kind of series. the idea of expansion into δ series becomes really
useful only when employed for approximating, by truncating the series at some point. In this case, the
concept of truncation is based on neglecting the coefficients standing next to some derivative of the δ
function and higher, with an assumption that these coefficients are much smaller than the previous B’s.
Using the formalism (1.4) this means that one neglects all terms of order On and higher. This allows
for the variable V µν(x) to be modeled in a suitable way to describe matter more or less localized on the
surface M.

So for example, neglecting all the terms of order O1 and higher defines the so-called single-pole
approximation, and the variable V µν(x) is written as:

V µν(x) =

∫
M
dp+1ξ

√
−γ Bµν(ξ)

δ(D)(x− z)√
−g

.

Clearly, this does not mean that everywhere in all equations the derivatives of the δ function should be
dropped, but rather that for the given variable V µν(x) the coefficients standing next to derivatives are to
be neglected. If this variable is under a derivative in some equation, it must not be neglected, no matter
the presence of the derivative of the δ function.

Neglecting all the terms of order O2 and higher defines the so-called pole-dipole approximation, and
the variable V µν(x) is written as:

V µν(x) =

∫
M
dp+1ξ

√
−γ
[
Bµν(ξ)

δ(D)(x− z)√
−g

−∇ρ
(
Bµνρ(ξ)

δ(D)(x− z)√
−g

)]
. (1.12)

Usually it is assumed here that Bµν ∼ O0 and Bµνρ ∼ O1. Similarly one defines the quadrupole, octupole
and higher approximations.

Let us comment also that the truncation is a covariant operation, in the sense that truncation of
the series in one coordinate system implies the truncation at the same point in all other coordinate
systems. This is a consequence of manifestly covariant notation (1.11), and is important for multipole
approximations to be well defined.
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1.5 Symmetries of multipole approximations

In section 1.3 we studied in detail how the δ series behaves with respect to spacetime diffeomorphisms.
We have determined that the notation (1.11) is manifestly covariant with respect to arbitrary coordinate
transformation x → x′ = x′(x), and that each variable transforms as a tensor in accordance to space-
time indices it carries. Given that, the B coefficients are special in the sense that after the coordinate
transformation the B′ coefficient is always evaluated on the surface M.

Similarly one can study the behavior under the reparametrization of the surface M, i.e. diffeomor-
phisms of ξ coordinates. That analysis is far more simple, and one can easily see that all B coefficients
transform as scalars with respect to transformations ξ → ξ′ = ξ′(ξ), since the volume element dp+1ξ to-
gether with the factor

√
−γ transforms as a scalar. In complete analogy we can discuss the reparametriza-

tion diffeomorphisms on the boundary ∂M, λ→ λ′ = λ′(λ), and arrive at analogous conclusions.
According to all this, we may conclude that every variable transforms in accordance to its index

structure, honoring all three types of indices. This is illustrated in the table.

Transformation Bµνρ(ξ) γab(ξ) gµν(x) uµa(ξ) na(λ) vai (λ) vµi (λ)

x→ x′ = x′(x) tensor scalar tensor vector scalar scalar vector
ξ → ξ′ = ξ′(ξ) scalar tensor scalar vector vector vector scalar
λ→ λ′ = λ′(λ) scalar scalar scalar scalar scalar vector vector

In order to ensure this manifest covariance also for the derivatives of these variables in various direc-
tions, we introduce here also (total) covariant derivatives ∇a and ∇i, which act on all variables defined on
the surfaceM and its boundary ∂M respectively, correcting every index with an appropriate Christoffel
connection term:

∇aV µb ≡ ∂aV
µb +

{
µ
λρ

}
uρaV

λb +
{
b
ca

}
V µc,

∇iV µbj ≡ ∂iV
µbj +

{
µ
λρ

}
vρi V

λbj +
{
b
ca

}
vai V

µcj +
{
j
ki

}
V µbk.

Christoffel connections on the surface and its boundary are induced as projections of the spacetime
connection, and each of them can be calculated as a Christoffel symbol constructed out of appropriate
metric, γab and hij . Defined in this way, the derivatives satisfy all metricity conditions:

∇agµν(z) = 0, ∇aγbc(ξ) = 0,

∇igµν(z(ζ)) = 0, ∇iγab(ζ) = 0, ∇ihjk(λ) = 0.

After the analysis of spacetime, surface and boundary diffeomorphisms, let us consider two more
symmetries, the so-called first and second extra symmetry. Namely, it turns out that the δ series in
addition to diffeomorphisms exhibits some other symmetries, and we shall now study their nature. For
simplicity, we shall limit to the pole-dipole approximation of the δ series, although both symmetries can
be defined in general.

We may infer the first extra symmetry if we notice that every term in the expansion (1.12) essentially
contains D − p − 1 δ functions, which localize matter to the surface of a p-brane in D-dimensional
spacetime. The remaining p + 1 δ functions and corresponding p + 1 integrations are there only to
make the expression covariant. This suggests that some components of B coefficients are superfluous.
Specifically, the derivatives in the directions lying in the surface M are integrated out, as they should
bearing in mind that matter is not localized in these directions. This implies that parallel components
of the coefficients Bµνρ should not appear at all in the expansion (1.12). In order to verify this, define
the transformation law of the form

δ1B
µνρ = εµνauρa, (1.13a)

where εµνa(ξ) are arbitrary parameters. Demanding that the functional (1.7) remains invariant, it follows
that

δ1B
µν = ∇aεµνa, naε

µνa
∣∣∣
∂M

= 0. (1.13b)
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Equations (1.13) define the first extra symmetry.
It is now easy to see that parallel components of Bµνρ coefficients are actually pure gauge,

δ1(Bµνρuaρ) = εµνa,

and that they can be gauged away everywhere except on the boundary, where parameters εµνa are not
completely arbitrary. A consequence of this is that the theory will exhibit some degrees of freedom which
live exclusively on the boundary of a p-brane, and do not enter the equations of motion, but rather only
boundary conditions. In the following chapter we shall deal with their physical interpretation, among
other things.

The second extra symmetry can be inferred if we remember that, exactly speaking, variable V µν(x)
itself does not depend at all on the choice of the surface M used for expansion into δ series. In other
words, if we do not truncate the series, it must remain invariant under the transformations M → M′,
where M′ denotes some other surface. Naturally, the B coefficients will change accordingly, and their
transformation laws under the change zµ → z′µ define the gauge symmetry that is named second extra
symmetry.

Second extra symmetry is exact only if we consider the whole δ series, while truncation breaks it.
Indeed, if we truncate the δ series at the n-th term, the condition Bn = Bn+1 = · · · = 0 becomes a gauge
fixing condition which partially fixes the shape of the surfaceM. If we transform to another surfaceM′,
we must be careful for the new coefficients B′n, B′n+1, . . . , to remain negligible, so that the series is still
truncated at the same point. This reduces the possibilities for the choice of the new surface.

All this can be neatly written using the formalism (1.4). The transformation of the surface is defined
as

zµ(ξ) → z′µ(ξ) = zµ(ξ) + εµ(ξ), (1.14a)

where the parameters εµ are constrained in pole-dipole approximation by the gauge condition B′n+1 ∼ O2

for all n ∈ N. Requesting the functional (1.7) to remain invariant with respect to transformations (1.14a)
gives the laws of transformation for B coefficients,

δ2B
µν = −Bµνuaρ∇aερ −Bλν

{
µ
λρ

}
ερ −Bµλ

{
ν
λρ

}
ερ, δ2B

µνρ = −Bµνερ, (1.14b)

and at the same time we see that the gauge condition enforces a restriction on the parameters,

εµ(ξ) ∼ O1. (1.15)

Equations (1.14) with the condition (1.15) define the second extra symmetry, in pole-dipole approxima-
tion.

Regarding these transformations it is necessary to comment three issues. First, note that the εµ,
defined via equation (1.14a), transforms as a vector. Then explicit presence of Christoffel connection
in (1.14b) appears to contradict the tensorial character of Bµν coefficients. Of course, this is only
apparent, but there is no real contradiction. This is easy to see if we look closely to the transformation
law for Bµν coefficients with respect to spacetime diffeomorphisms, (1.10). There the coefficients of the
transformation are evaluated at the point x = z. When the surface M changes according to (1.14a), the
law of coordinate transformations for the new coefficients Bµν given in (1.14b) is precisely the same as
(1.10), where now the coefficients of the transformation are evaluated at the new point, x = z′, since the
surface has changed. This is possible precisely due to the presence of Christoffel symbols in (1.14b).

The second comment is related to the single-pole approximation. Namely, there gauge conditions
B1 = B2 = · · · = 0 fix εµ = 0 completely, so the symmetry is trivial. This is a consequence of the fact
that in this approximation matter is distributed strictly on one surface, so there is no freedom in the
choice of M.

Finally, the third comment is related to the fact that fixing the gauge of second extra symmetry
defines the so-called central surface of mass, which in case of the 0-brane, i.e. the particle, reduces to
the familiar notion of center of mass line. In the next chapter we shall see how a good choice of central
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mass surface simplifies equations of motion of a p-brane and helps us interpret the free parameters of the
theory.

With this we end the exposition of general properties of δ series expansion, and we now turn to
derivation and analysis of effective equations of motion for a p-brane, using the multipole formalism
developed in this chapter.



Chapter 2

EQUATIONS OF MOTION FOR A
p-BRANE

As we announced in the foreword, the main subject of this paper is the derivation of effective equations
of motion for a p-brane in spacetimes with curvature and torsion. This is done starting from two basic
assumptions — Poincaré invariance and the demand for the matter to be localized on the (p + 1)-
dimensional hypersurface M which is called the brane worldsheet. Poincaré invariance as a consequence
gives the covariant conservation laws for the two corresponding currents — the stress–energy tensor and
the spin tensor. In the first section we shall deal with the form and properties of these laws. The matter
localization assumption enables us to make use of multipole formalism developed in the previous chapter,
and we shall mainly work in pole-dipole approximation. For the sake of clarity of the exposition, the
derivation of equations of motion itself will first be performed for the special case of scalar matter, in
section two. The obtained equations will turn out to be quite complicated and will demand further
analysis and interpretation of free parameters, which is taken up in the third section. Finally, in section
four we deal with the general case — motion of matter with spin in Riemann-Cartan spacetime, where
we upgrade the interpretation from the scalar case with new concepts specific to spin and torsion. The
section and the chapter is finalized with the discussion of the single-pole approximation as a special case,
because it plays a major role in later analysis of the Dirac matter.

2.1 Covariant conservation laws

One of the main postulates of modern physics is the Poincaré symmetry of physical laws. Specifically,
if we split the total Lagrangian L of a given fundamental theory into the gravitational part Lg and the
rest Lm (which is by definition called the matter Lagrangian), in virtually all standard theories it turns
out that Lm is itself invariant to local Poincaré transformations. Employing the Emmy Noether theorem,
we may then derive covariant conservation laws for the translations current, the so-called “stress–energy
tensor” τµν , and the Lorentz transformations current, the “spin tensor” σλµν . In our notation, the
covariant conservation laws for these two currents have the form [27]:(

Dρ + Tλρλ
)
τρµ = τνρT

ρ
µν +

1

2
σνλρRλρµν , (2.1a)(

Dρ + Tλρλ
)
σρµν = τµν − τνµ . (2.1b)

These equations are the main starting point in derivation of effective equations of motion for a p-brane.
But before we get involved in that task, we need to comment on one very important issue regarding the
structure of these equations. At a first glance, the variables in the theory are τµν and σλµν . However, a
closer look at the equation (2.1b) reveals that it can be interpreted as an equation for the antisymmetric
part of stress–energy tensor, τ [µν]. Moreover, this equation is algebraic in τ [µν], and even solved explicitly

9
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for it. This means that, if we know σλµν , the antisymmetric part of the stress–energy tensor can be
completely calculated, with no arbitrary constants of integration or allowance for boundary conditions
typical for differential equations. In other words, τ [µν] components do not represent independent variables,
but are rather fully determined by σλµν . Because of this we do not treat them as independent, and use
(2.1b) to eliminate them entirely from (2.1a), after which we are left with just one differential equation
for the independent variables τ (µν) and σλµν ,

∇ν
(
τ (µν) +

1

2
Kλρ

µσνλρ −K [µ
λρσ

ρλν] −∇ρσ(µν)ρ

)
=

1

2
σνρλ∇µKρλν , (2.2)

while (2.1b) is considered as a definition of the antisymmetric part of the stress–energy tensor.
Such setup is appropriate for the analysis of kink motion in “external” gravitational field. This means

that curvature and torsion are not localized around the p-brane, while all other fields are. Of course,
one may in principle consider a situation where for example electromagnetic field is also considered to
be “external”. Then the Lagrangian would be split into the gravitational part Lg, electromagnetic part
Lem and the rest Lm which would be called matter, by definition. In that case, the matter Lagrangian
would possess, other than Poincaré symmetry, also the internal gauge symmetry of electromagnetic field,
U(1). As a consequence, there would be also another current and a corresponding covariant conservation
equation. Of course, it should be noted that the splitting of the Lagrangian into appropriate parts is not
unique, due to the interactions between matter and external fields, as well as the interactions between
external fields themselves. However, we shall not deal with concrete Lagrangian models at all, but will
just suppose that the split has been made somehow, and that the matter fields are localized around a
p-brane, while external fields are not. In relation to the program including internal gauge fields, we also
need to note that there is a problem in realization of nontrivial coupling of the gauge field with torsion.
Namely, it turns out that any such coupling is inconsistent, because it breaks the gauge symmetry. For
all these reasons we shall not get into analysis of such cases in this paper.

2.2 Derivation of equations of motion

Let us deal now with the derivation of equations of motion for a p-brane, using the multipole formalism
developed in previous chapter. In order to demonstrate the derivation procedure in a clear way, in this
and the following section we shall restrict to the case of scalar matter. This means that

σλµν = 0,

so the equation (2.2) reduces to
∇ντ (µν) = 0. (2.3)

We shall work in pole-dipole approximation, so we expand the stress–energy tensor into a δ series around
a (p+ 1)-dimensional worldsheet M:

τ (µν)(x) =

∫
M
dp+1ξ

√
−γ
[
Bµν(ξ)

δ(D)(x− z)√
−g

−∇ρ
(
Bµνρ(ξ)

δ(D)(x− z)√
−g

)]
. (2.4)

The derivation of equations of motion goes as follows. First we introduce an arbitrary vector field
fµ(x) with compact support, and rewrite the equation (2.3) in a suitable form∫

dDx
√
−gfµ∇ντ (µν) = 0, ∀fµ. (2.5)

Then we employ the expansion (2.4) of the stress–energy tensor. Owing to the compactness of the support
of the test-function fµ, we are allowed to commute the integrals and eliminate boundary terms. That
leads us to ∫

dp+1ξ
√
−γ (Bµνfµ;ν +Bµνρfµ;νρ) = 0, (2.6)
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where fµ;ν ≡ (∇νfµ)x=z i fµ;νρ ≡ (∇ρ∇νfµ)x=z. The fact that this equation holds for every fµ(x)
enforces certain restrictions on the coefficients Bµν and Bµνρ. In order to deduce them, it is necessary
to rewrite the equation in such a form where only the truly arbitrary and independent derivatives of
the field fµ are present. However, this is nontrivial. Namely, the field fµ(x) is indeed arbitrary, but if
given everywhere on the surface M, then also all derivatives in the directions tangent to the surface are
automatically fixed. Therefore, we split the first and second derivative of fµ into components orthogonal
and parallel to the surface M:

fµ;λ = f⊥
µλ + uaλ∇afµ, (2.7a)

fµ;(λρ) = f⊥
µλρ + 2f⊥

µ(λau
a
ρ) + fµabu

a
λu

b
ρ, (2.7b)

fµ;[λρ] =
1

2
Rσµλρfσ. (2.7c)

We obtain these components by the virtue of the projectors

P⊥
µ
ν = δµν − uµauaν , P‖

µ
ν = uµau

a
ν . (2.8)

Specifically, we have:

f⊥
µλ = P⊥

σ
λfµ;σ, f⊥

µλρ = P⊥
σ
λP⊥

ν
ρfµ;(σν),

f⊥
µλa = P⊥

σ
λu

ν
afµ;(σν), fµab = uσau

ν
bfµ;(σν).

A straightforward calculation now leads us to

fµab = ∇(a∇b)fµ − (∇auνb )f⊥
µν ,

f⊥
µρa = P⊥

ν
ρ∇af⊥

µν + (∇aubρ)∇bfµ +
1

2
P⊥

λ
ρu

ν
aR

σ
µνλfσ,

(2.9)

and tells us that the only independent components on the surface are fµ, f⊥
µν and f⊥

µνρ. At this point
we substitute (2.7) and (2.9) into equation (2.6) and group together the coefficients proportional to the
independent components of fµ. The resulting equation has the following general structure:∫

M
dp+1ξ

√
−γ
[
Xµνρf⊥

µνρ +Xµνf⊥
µν +Xµfµ +∇a

(
Xµνaf⊥

µν +Xµab∇bfµ +Xµafµ
) ]

= 0.

Now owing the fact that fµ, f⊥
µν and f⊥

µνρ are independent on the worldsheet, we conclude that the first
three terms must separately be equal to zero. This gives us the following equations:

P⊥
(ν
λ P⊥

σ)
ρ B

µλρ = 0, (2.10a)

P⊥
σ
ν

[
Bµν −∇a

(
Bµρνuaρ + P⊥

ν
λB

µλρuaρ
) ]

= 0, (2.10b)

∇b
(
Bµνubν + 2Bµ(λρ)uaλ∇aubρ −∇aBµ(λρ)uaλu

b
ρ

)
−
(
P⊥

ρ
σB

ν(λσ) +
1

2
Bνλρ

)
Rµνλρ = 0. (2.10c)

What remains is a surface integral which is also zero:∫
∂M

dpλ
√
−hna

(
Xµνaf⊥

µν +Xµab∇bfµ +Xµafµ
)

= 0. (2.11)

When evaluated on the boundary ∂M, components f⊥
µν and fµ are mutually independent, but ∇afµ is

not. For this we split the derivative ∇a into components orthogonal and parallel to the boundary:

∇afµ = na∇⊥fµ + via∇ifµ. (2.12)

Here we introduced ∇⊥ ≡ na∇a. Now, f⊥
µν , ∇⊥fµ and fµ are also mutually independent, so the equation

(2.11) gives three boundary conditions:

P⊥
ν
λB

µ(λρ)uaρna

∣∣∣
∂M

= 0, (2.13a)
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Bµλρuaλu
b
ρnanb

∣∣∣
∂M

= 0, (2.13b)[
∇i
(
Bµ(λρ)uaλu

b
ρv
i
anb

)
− nb

(
Bµνubν + 2Bµ(λρ)uaλ∇aubρ −∇aBµ(λρ)uaλu

b
ρ

)]∣∣∣
∂M

= 0. (2.13c)

Equations (2.10) and (2.13) describe matter of a p-brane in pole-dipole approximation. As we can
see, the basic variables zµ, Bµν and Bµνρ enter the equations in such a way that it is quite difficult to
give them some physical interpretation. For this reason, we turn to diagonalization of the equations, i.e.
rewriting them using new variables which are determined by solving all algebraic equations in (2.10).
Namely, it is essential to notice that equation (2.10a) is algebraic, so we use it to switch from Bµνρ to
new variables which satisfy it automatically. splitting Bµνρ into orthogonal and parallel components and
substituting it into (2.10a), we obtain

Bµνρ = 2u
(µ
b B

ν)ρb
⊥ + uµau

ν
bB

ρab
⊥ + uρaB

µνa, (2.14)

while B
(µν)a
⊥ ≡ B

µ[ab]
⊥ ≡ B[µν]a ≡ 0. Note that the component Bµνa is not split into orthogonal and

parallel parts. It is rather left as is because of the first extra symmetry, which suggests that this component
is pure gauge and should vanish from the equations of motion.

Now we employ (2.14) to rewrite the next equation of motion, (2.10b), as

P⊥
ρ
ν

[
Bµν −∇a (Lµνa +Nµνa)

]
= 0, (2.15)

where
Lµνa ≡ Bµνa⊥ + u

[µ
b B

ν]ba
⊥ , Nµνa ≡ Bµνa + u

(µ
b B

ν)ba
⊥ . (2.16)

The new variables introduced, Lµνa and Nµνa have both orthogonal and parallel components, but will
turn out to be very useful as they are. Note here that the definition equation for Lµνa in (2.16) implies
the relation

Lµν[aub]ν = 0. (2.17)

The coefficients Nµνa = Nνµa and Lµνa = −Lνµa are, with condition (2.17), in one-to-one correspondence
with Bµνρ:

Bµνρ = 2u(µ
a L

ν)ρa +Nµνauρa. (2.18)

Given this, in what follows we shall eliminate Bµνρ in favor of Lµνa and Nµνa in all remaining equations.
Now we turn to the analysis of Bµν coefficients. Using the projectors (2.8), we have

Bµν = Bµν⊥ + 2u
(µ
b B

ν)b
⊥ + uµau

ν
bB

ab. (2.19a)

Substituting this into (2.15), we obtain

Bµν⊥ = P⊥
µ
λP⊥

ν
ρ∇aNλρa, Bµa⊥ = uaλP⊥

µ
ρ∇b

(
Lλρb +Nλρb

)
, (2.19b)

and
P⊥

µ
λP⊥

ν
ρ∇aLλρa = 0. (2.20a)

Equations (2.19b) and (2.20a) are equivalent to (2.15). The first tells us that Bµν⊥ and Bµa⊥ are completely
determined via L and N . This means that Bab, Lµνa and Nµνa are the only free parameters in the theory.
Also, the equation (2.20a) is called the angular momentum precession equation, which will become clear
once we give appropriate physical interpretation to coefficients Lµνa.

Finally, employ (2.18) and (2.19) to rewrite the only remaining big equation of motion (2.10c) via the
new, independent variables:

∇b
(
mabuµa − 2ubλ∇aLµλa + uµc u

c
ρu
b
λ∇aLρλa

)
− uνaLλρaRµνλρ = 0, (2.20b)

where
mab ≡ Bab − uaρubλ∇cNρλc. (2.21)
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Equation (2.20b) represents a differential equation to determine the functions zµ(ξ), so it is called the
equation of motion of a p-brane. The variable mab is a symmetric tensor on the worldsheet, and we use
it instead of Bab as a free parameter. As we anticipated using the first extra symmetry, the coefficients
Nµνa dropped out of equations (2.20).

Now, using all these results, we perform an analogous diagonalization procedure on the boundary
conditions (2.13). Using algebraic relations (2.18), (2.19) and (2.21), we rewrite the boundary conditions
via the independent coefficients:

Lµνananν

∣∣∣
∂M

= 0, (2.22a)

P⊥
µ
λP⊥

ν
ρL

λρana

∣∣∣
∂M

= 0, (2.22b)[
∇i
(
N ijvµj + 2Lµνanav

i
ν

)
− nb

(
mbauµa − 2ubν∇aLµνa + uµc u

c
ρu
b
λ∇aLρλa

) ]∣∣∣
∂M

= 0, (2.22c)

where
N ij ≡ Nµνanav

i
µv
j
ν . (2.23)

The coefficients N ij are defined only on the boundary ∂M, and do not appear anywhere else in the
equations. This was also anticipated in the discussion of the first extra symmetry, because on the
boundary there was a restriction for the gauge parameters, which reduced the number of degrees of
freedom available to be gauged away on the boundary.

Let us sum up the results The dynamics of a p-brane in pole-dipole approximation is determined via:

• the equation of motion (2.20b),

∇b
(
mabuµa − 2ubλ∇aLµλa + uµc u

c
ρu
b
λ∇aLρλa

)
− uνaLλρaRµνλρ = 0,

• the angular momentum precession equation (2.20a),

P⊥
µ
λP⊥

ν
ρ∇aLλρa = 0,

• the boundary conditions (2.22) which those two equations must satisfy.

These equations are equivalent to the covariant conservation equation (2.3).
It is necessary to make a few comments. First, in the equations appear the free parameters Lµνa, mab

and N ij , which carry the information about the internal structure of the brane, i.e. about the properties
of the matter the brane is made of. In the next section we shall analyze these coefficients and give them
the physical interpretation of the angular momentum current and the effective stress–energy tensors of
the brane and its boundary, respectively.

Second, we see that torsion is entirely absent from the equations. This is a consequence of the
assumption that matter carries no spin, and may also be seen from the starting equation (2.2) where
torsion couples exclusively with spin.

The third comment is in regard to interactions. Namely, we see that there is an explicit interaction of
parameters Lµνa with both the curvature tensor and the orbit of the brane. In the particle special case
the interaction with the curvature is responsible for the geodesic deviation, i.e. the violation of the weak
equivalence principle. Of course, this is not a surprise since the particle in pole-dipole approximation is
not “completely pointlike”, but exhibits some thickness characterized by the parameters Lµνa, so “tidal
effects” appear, i.e. geodesic deviation. In the case of the string and other branes this effect is also
present. As for the interaction with the orbit, in the particle special case it can be eliminated using
the second extra symmetry, as we shall see in the next chapter. This is related to the choice of the
center-of-mass line, and is characteristic for the particle case. In the case of a string and other branes
the second extra symmetry may also be utilized to fix the appropriate central surface of mass, but that
is not enough to eliminate the interaction with the orbit, which remains present in the equations.

Fourth, we should comment on the transformation laws for the free parameters. According to defini-
tions (2.16), (2.21) and (2.23) we see the following:
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• under the diffeomorphisms of spacetime, the worldsheetM and its boundary ∂M, parameters mab,
Lµνa and Nµνa (so also N ij) transform as tensors, in accordance with their index structure.

• under the first extra symmetry, according to definition (1.13) we have:

δ1m
ab = 0, δ1L

µνa = 0, δ1N
µνa = εµνa,

where on the boundary the parameters εµνa satisfy the restriction (1.13b), so δ1N
ij = 0. In other

words, the equations of motion (2.20) and boundary conditions (2.22) are invariant under the first
extra symmetry, as expected. Also, we see that coefficients Nµνa are pure gauge everywhere but
on the boundary, where components N ij survive.

• under the second extra symmetry, using (1.14) and splitting the parameters εµ = εµ⊥ + uµaε
a, we

obtain:
δ2m

ab = −
(
ucµm

ab + u(a
µ m

b)c
)
∇cεµ⊥ +

(
εc∇cmab − 2m(bc∇cεa)

)
,

δ2L
µνa = −mabu

[µ
b ε

ν]
⊥ , δ2N

ij = −mabviav
j
bncε

c. (2.24)

Of course, equations of motion and boundary conditions are invariant under this symmetry as well,
taking into account the transformation laws of geometric variables.

In regard to the second extra symmetry it should be noted that parameters εa represent the moving of
the surface into itself, given that tangential motions actually do not change the shape of the surface.
This holds everywhere but on the boundary, and it can be seen that the subgroup of the second extra
symmetry, defined as

zµ → z′µ = zµ + uµaε
a, εana

∣∣∣
∂M

= 0,

is actually identical to surface reparametrizations, ξa → ξ′a = ξa + εa(ξ), since εa ∼ O1, so the quadratic
and higher terms may be neglected in pole-dipole approximation. Because of this we could in principle
eliminate all terms containing εa from the above equations. Nevertheless, on the boundary the parameters
εa still need not obey the restriction εana = 0, so in general we must leave them present in the equations.

Now it is a proper moment to understand the physical meaning of the parameters mab, Lµνa and N ij ,
in order to make an easier path to the understanding the general case of matter with spin.

2.3 Analysis and physical interpretation

Let us now deal with the interpretation of the coefficients mab, N ij and Lµνa. First, the mab coeffi-
cients appear already in single-pole approximation [24, 25], and represent an effective (p+1)-dimensional
stress–energy tensor of a p-brane. Let us repeat briefly known results — in single-pole approximation
the mass tensor is covariantly conserved, ∇amab = 0, and in the case of a particle coincides with its
total mass. In the string case we may perform an eigenvalue problem analysis in order to classify four
basic inequivalent types of matter the string is made of: massive, massless, Nambu-Goto and tachyonic
type. In general case of a p-brane we can also use similar methods to classify matter, and find even more
inequivalent types of matter. All these results remain the same also in pole-dipole approximation, with
the exception of covariant conservation which is broken by higher order terms.

The appearance of strange N ij coefficients which live exclusively on the boundary is a consequence
of the boundary condition in (1.13b) which the first extra symmetry parameters must obey. Physically,
the N ij coefficients characterize the tangential component of the p-brane thickness. Namely, when an
infinitely thin brane is thickened, which essentially happens when going from single-pole to pole-dipole
approximation, the thickening is performed in all spatial directions. Obviously, thickening in the directions
tangential to the brane surface changes nothing in its interior, simply because the brane is not localized
in those directions anyway. However, if the brane has a spatial boundary, thickening at those points is
a nontrivial change. The boundary structure obtained in this way is characterized with N ij coefficients.
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Actually, they represent a p-dimensional stress–energy tensor of the brane boundary (of the order O1),
in full analogy with mab for the whole brane. The best way to see this is to examine the case of a
p-brane with an extra (p−1)-brane attached to its boundary (this sort of situation will be studied for the
p = 1 example in section 3.2). The procedure for derivation of equations of motion then gives modified
boundary conditions where N ij coefficients appear as an O1 correction terms to the effective stress–energy
tensor of the boundary brane, mij (which is of the order O0). If that extra boundary-brane is absent,
N ij coefficients become dominant, and reflect the fact that the boundary has “thickness”. Thus we see
that thickening of the brane has an effect amounting to attaching a “light” (p−1)-brane to the boundary.

Turning now to coefficients Lµνa, we note that there are several ways to see that these may be
interpreted as the brane angular momentum current. The first one is the generalization from the case of
0-brane, where these coefficients are already interpreted as particle angular momentum [4]. The second
one is straightforward computation of the angular momentum tensor Mµνρ ≡ τρ[µxν]. However, in this
paper we shall employ the third method, which amounts to simple counting of the charges for the (p+1)-
currents Lµνa, and then demonstrating that there are precisely as many of them as there are generators
of the appropriate rotation group.

First fix an appropriate coordinate system. Pick an arbitrary point on the brane, and equip it with
inertial coordinate systems of spacetime and worldsheet. In this way, gµν and γab reduce at that point to
ηµν and ηab, respectively. Then, by a suitable Lorentz rotation of the spacetime basis we fix the reference
frame to be comoving for that point:

uµa = δµa .

In this gauge, the relation (2.17) reduces to

Lµab = Lµba . (2.25a)

Now we count the number of independent charge densities Lµν0. As a first step, we make use of the
relation (2.25a), and the antisymmetry

Lµνa = −Lνµa (2.25b)

to eliminate coefficients Labc. We are left with charge densities Lµ̄ν̄0 and Lµ̄a0 (here we use a “bar”
notation to split the spacetime indices as µ = (a, µ̄)). Since µ̄ takes D− p− 1 values, there are (D− p−
1)(D − p − 2)/2 independent Lµ̄ν̄0 coefficients and (D − p − 1)(p + 1) independent Lµ̄a0 coefficients. In
total, this makes

D(D − 1)

2
− (p+ 1)p

2
≡ dim [SO(1, D − 1)]− dim [SO(1, p)] (2.26a)

independent charge densities Lµν0.
As we can see, the number of independent charges of the currents Lµνa is given as a difference of

two terms. The first represents the dimension of the SO(1, D − 1) group, or equivalently, the number
of independent Lorentz rotations in D spacetime dimensions. The second term is the dimension of the
SO(1, p) group, i.e. the number of independent Lorentz rotations on the (p+ 1)-dimensional worldsheet.
So, our charges correspond to Lorentz rotations orthogonal to the worldsheet. Given that, we naturally
associate them with the internal angular momentum of the brane.

It should be noticed that among the charges Lµν0 there is not a single one corresponding to tangential,
i.e. rotations on the worldsheet. The reason for this lies in the fact that such rotations are already
accounted for through the effective stress–energy tensor of the brane, mab. Indeed, these rotations do not
require nontrivial brane thickness — they are present even in the single-pole approximation. Contrary
to these, the possibility of matter rotating in the orthogonal planes in a comoving frame demands brane
thickness, i.e. at least pole-dipole approximation. The coefficients Lµνa give some measure of this
thickness, and do not exist in the case of infinitely thin brane. As a consequence, the p(p+1)/2 components
of angular momentum related to tangential rotations are rather associated to the mab currents than to
Lµνa.

In order to consider this even further, let us introduce an additional splitting of the worldsheet indices,
a = (0, ā), which separates time components. Now the nonzero densities of Lµνa coefficients are written
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as Lµ̄ν̄0, Lµ̄ā0 and Lµ̄00. They correspond to µ̄ − ν̄, µ̄ − ā and µ̄ − 0 planes of rotation, respectively.
Specifically, Lµ̄ν̄0 and Lµ̄ā0 correspond to spatial rotations, while Lµ̄00 correspond to boosts.

At this point we may employ the freedom of second extra symmetry to fix some unphysical degrees of
freedom. In order to do this, first apply the transformation laws (2.24) to boosts Lµ̄00 in the comoving
reference frame uµa = δµa . The resulting equation

δ2L
µ̄00 =

1

2
m00εµ̄

says that the boosts Lµ̄00 are pure gauge and can be eliminated. This leaves us with the densities of
the spatial angular momentum densities Lµ̄ν̄0 and Lµ̄ā0 as only physical charge densities for the currents
Lµνa. As above, via direct counting we see that there are precisely

(D − 1)(D − 2)

2
− p(p− 1)

2
≡ dim [SO(D − 1)]− dim [SO(p)] (2.26b)

independent charges. They correspond to spatial rotations orthogonal to the brane.
According to the equations of motion (2.20), we see that the currents Lµνa couple not only to spacetime

curvature, but also with the orbit of the p-brane. In the case of a free particle this interaction can be
completely gauged away using the second extra symmetry, i.e. via suitable choice of the center-of-mass
line. It turns out that in flat spacetime this line is precisely a straight line, and this shall be demonstrated
when we examine the particle example in detail.

After the appropriate interpretation is given to the free parameters mab, N ij and Lµνa, we turn now
to the general case of motion of matter with nonzero spin.

2.4 Equations of motion for matter with spin

In section 2.1 we have established that, for the description of matter with spin, it is most convenient to
use the variables τ (µν) and σλµν , which satisfy the covariant conservation law (2.2). In the previous two
sections we have studied the special case of spinless matter in a torsionless spacetime, in the pole-dipole
approximation. Now we turn to the discussion of the general case.

Begin with the definition of the approximation we shall adopt:

τ (µν)(x) =

∫
M
dp+1ξ

√
−γ
[
Bµν(ξ)

δ(D)(x− z)√
−g

−∇ρ
(
Bµνρ(ξ)

δ(D)(x− z)√
−g

)]
,

σλµν(x) =

∫
M
dp+1ξ

√
−γ Cλµν(ξ)

δ(D)(x− z)√
−g

.

Let us focus on several important comments. As a first comment, observe that we work in the pole-dipole
approximation for τ (µν), while simultaneously in the single-pole approximation for the spin tensor. In
what follows we shall call this choice simply the pole-dipole approximation, despite the fact that it is not
fully such. There are four reasons for introducing this kind of approximation. First, one can note that
in the conservation law (2.2) the spin tensor among other places appears under an additional derivative,
in the final term on the left. From there one can see that the symmetrized C(µν)ρ will precisely add up
with the Bµνρ coefficients, thus giving the spin contribution to the angular momentum current Lµνa, as
we shall see below. In this way one naturally introduces the total angular momentum current, which will
be convenient for the subsequent analysis, and it is also visible that the monopole term of the spin tensor
naturally combines with the dipole term of the stress–energy tensor. Second, this approximation provides
a good enough framework for the discussion of the proper single-pole approximation, which is obtained
by the choice Bµνρ ≡ 0, and which is much more important and interesting in its consequences. Third,
an eventual contribution of the dipole term in the spin tensor which we could include would drastically
complicate the equations and does not have an interesting physical interpretation. Finally, as we shall
see in the examples, there are interesting indications that the monopole term of the spin tensor is of the
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order O1, i.e. of the same order as the dipole term of the stress–energy tensor. For all these reasons, we
will not discuss the dipole spin term, a practice that follows all previous papers in this area.

The second important comment is the behavior of the two extra symmetries in this approximation.
The first extra symmetry is a consequence of the fact that we have nonphysical degrees of freedom in the
dipole term of the stress–energy tensor, and it exists here in the same form. Let us just note that the
monopole spin term transforms trivially with respect to this symmetry, as expected.

The second extra symmetry is, by its nature, connected to the approximation order, which in our case
makes the situation slightly more complicated. As we have already seen, the stress–energy tensor in the
pole-dipole approximation has this symmetry provided that Bµν ∼ O0 and Bµνρ ∼ εµ ∼ O1. However,
there is an issue with the spin tensor, since it is specified in the single-pole approximation. Namely, if
its monopole coefficient Cλµν is considered as a quantity of order O0, the symmetry is lost, since the
invariance of the spin tensor then requires εµ ≡ 0, as expected for the single-pole approximation. If we
want to conserve the second extra symmetry, we can correct this with the requirement that Cλµν ∼ O1.
However, the price we have to pay is the impossibility of studying the matter whose spin is of the same
order as its energy, loosely speaking. This is easy to see because Bµν ∼ O0 � O1 ∼ Cλµν . This property
is something we always need to keep in mind in the situations when it is important to fix the second
extra symmetry.

After the discussion of all the issues related to the setup, we turn to the derivation of the equations
of motion. Given that the equation (2.2) is drastically more complicated than (2.3), the equations are
somewhat more cumbersome than those of section 2.2, so we will not present all the details. The method
of derivation is, however, completely analogous. One multiplies the equation (2.2) with a compact support
test function fµ(x), and integrate over spacetime in order to eliminate all δ functions. Then all derivatives
of fµ are split into orthogonal and tangential components in order to extract independent components
f⊥
µνρ, f

⊥
µν and fµ. After all remaining partial integrations, one can write the result in the form:∫
M
dp+1ξ

√
−γ
[
Xµνρf⊥

µνρ +Xµνf⊥
µν +Xµfµ +∇a

(
Xµνaf⊥

µν +Xµab∇bfµ +Xµafµ
) ]

= 0.

Since the components f⊥
µνρ, f

⊥
µν and fµ are mutually independent and arbitrary, the corresponding co-

efficients X are equated to zero and one thus obtains the equations of motion and boundary conditions
analogous to (2.10) and (2.13).

The next step is the diagonalization of these equations. As (2.10a) before, the key role is played by
the equation Xµνρ = 0, which now looks as:

P⊥
(ν
λ P⊥

σ)
ρ

[
Bµλρ + C(µλ)ρ

]
= 0. (2.27)

Given that it has formally the same form as (2.10a), the corresponding general solution can be written
as:

Bµνρ + C(µν)ρ = 2u(µ
a J

ν)ρa +Nµνauρa, (2.28)

where now Jµνa and Nµνa satisfy the relations

Jµν[aub]ν = 0, Jµνa = −Jνµa, Nµνa = Nνµa.

The quantity Nµνa is again a pure gauge with respect to the first extra symmetry, while the quantity
Jµνa will become the total angular momentum once we discuss the form of the remaining equations.

Further diagonalization of the equations Xµν = 0, Xµ = 0 and boundary conditions is performed in a
way analogous to the section 2.2 and we will skip the details, but it is important to note the following —
in all the equations Bµνρ never appears on its own, but always in the combination Bµνρ + C(µν)ρ. This
allows us to use (2.28) to eliminate that sum in favor of variables J and N . Of course, the coefficient
Cµνρ does appear on its own in other places, so we treat it as an independent variable.

Finally, once the diagonalization procedure is completed, we obtain the following results:
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• the equation of motion for the p-brane:

∇b
[
mabuµa − 2ubλ

(
∇aJµλa +Dµλ

)
+ uµc u

c
ρu
b
λ

(
∇aJρλa +Dρλ

) ]
= (2.29)

= uνaJ
λρaRµνλρ +

1

2
Cνρλ∇µKρλν ,

• the angular momentum precession equation:

P⊥
µ
λP⊥

ν
ρ

(
∇aJλρa +Dλρ

)
= 0, (2.30)

• the boundary conditions:

Jµνanνna

∣∣∣
∂M

= 0, P⊥
µ
λP⊥

ν
ρnaJ

λρa
∣∣∣
∂M

= 0,

∇i
(
N ijvµj + 2Jµνanav

i
ν

) ∣∣∣
∂M

= (2.31)

= nb

[
mabuµa − 2ubρ (∇aJµρa +Dµρ) + uµc u

c
σu

b
ν (∇aJσνa +Dσν)

]∣∣∣
∂M

.

Here we have introduced a shorthand

Dµν def
=K [µ

λρC
ρλν] +

1

2
Kλρ

[µCν]ρλ.

The equations above represent equations of motion for a p-brane made of matter with spin in the gravi-
tational field with curvature and torsion, in the pole-dipole approximation, and represent the main result
of this paper.

Free parameters used to describe the matter are mab, N ij , Jµνa and Cλµν . The parameters m and
N have the same interpretation of effective stress–energy tensor of the p-brane and its boundary, like in
the case of scalar matter in Riman spacetime. Coefficients C simply describe the spin tensor current, so
it remains only to provide an appropriate interpretation for J . This is done as follows — if we choose
Cλµν = 0, the equations reduce to (2.10) and (2.13), provided that Jµνa is identified with the orbital
angular momentum current Lµνa. However, if we choose torsion to be zero, Kµνρ = 0, and leave nonzero
spin tensor, we see that the equations again reduce to (2.10) and (2.13), provided that now C does not
appear on its own anywhere, but only through J . Given that J couples to the curvature and to the orbit of
the p-brane in the same way as the orbital angular momentum current, but now has a contribution of the
spin current which precisely adds up with the orbit current as per (2.28), the most natural interpretation
for Jµνa is the total angular momentum current. This current has properties identical to those from the
previous section. Moreover, if we assume that Cλµν ∼ O1, the second extra symmetry allows one to
gauge away the boosts of the total angular momentum in the same way as was previously done for the
orbital part. This completes the interpretation of the equations of motion and the free parameters of the
p-brane in the pole-dipole approximation.

The single-pole case. Let us now turn to the important special case, the single-pole approximation.
It is defined by eliminating the dipole term from the stress–energy tensor, Bµνρ ≡ 0. However, this
has far reaching consequences for the permitted form of the spin tensor. Namely, B vanishes from the
equation (2.27). Solving this equation as before, with the condition of antisymmetry Cλµν = −Cλνµ we
obtain the following general form for the spin tensor:

Cλµν = 2uλaS
µνa − Eλabuµauνb + Sλµν . (2.32)

Here Sµνa, Eµab and Sλµν (of course with mab) are the only remaining free parameters of the p-brane.
By definition, they satisfy the following conditions:

Sµν[aub]ν = 0, Sµνa = −Sνµa, Eµab = −Eµba, Sλµν = −Sλνµ = Sνλµ.
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Comparing (2.28) and (2.32) we find the connection between the old and new coefficients,

Jµνa = Sµνa, Nµνa = E(µabu
ν)
b ,

so the equations of motion and the boundary conditions for the single-pole approximation are obtained
from (2.29), (2.30) and (2.31) by a simple substitution

Jµνa → Sµνa, N ij → Eij ≡ Eµabnav(i
µ v

j)
b .

This means that the equations of motion and boundary conditions in the single-pole approximation have
basically the same form as in the pole-dipole approximation, with the important additional condition
(2.32). Because of this we will not write them explicitly. The interpretation of the parameters is also not
necessary, since mab is still the effective stress–energy tensor of the p-brane, while Sµνa, Sλµν and Eµab

are simply various component currents of the spin tensor (for which there are no common names).
What must be emphasized regarding the single-pole approximation is its meaning — elimination of

every “perpendicular extended” structure, in the sense of the thickness of the p-brane. Among other
things, this means also the elimination of all orthogonal components of the orbital angular momentum
Lµνa, which will be especially interesting in the case of the particle, since in that case all components of
the orbital angular momentum are orthogonal and it is thus completely eliminated.

Finally, let us comment on one important property of the equation (2.32) in the case of the particle.
First, given that in the particle case all Latin indices take only one value, zero, the E coefficients are
identically zero due to the antisymmetry of appropriate indices. Thus in the particle case the equation
(2.32) becomes

Cλµν = 2uλSµν + Sλµν , (2.33)

where Sµν and Sλµν are totally antisymmetric tensors. This equation is different from the corresponding
equation found in the literature [10, 11, 12]. Namely, all authors who have discussed the particle in this
regime have obtained an equation of this type, but without the coefficient Sλµν . Since the spin tensor
of the Dirac particle is totally antisymmetric, such must be the monopole coefficients Cλµν . However,
imposing the antisymmetry to the equation Cλµν = 2uλSµν (which can be found throughout the previous
literature) it is easy to show that Sµν = 0, and thus Cλµν = 0, and finally as a consequence σλµν = 0
as well. In other words, the total antisymmetry of the spin tensor appeared to be forbidden, which was
interpreted by the authors in [10, 11, 12] that the Dirac particle cannot be discussed in the single-pole
approximation.

If we study in more detail the root of the difference between the equation obtained by those authors
and our equation (2.33), it turns out that it is due to the fact that those authors have treated the
antisymmetric part of the stress–energy tensor τ [µν] as an independent variable. The consequence of
this was that in the single-pole approximation the equation (2.1b) enforces a strong constraint on σλµν ,
which effectively eliminates precisely the totally antisymmetric component Sλµν from (2.33). But, if one
takes into account the analysis of the first section of this chapter, from the discussion of the independent
variables of the equations (2.1) one can see that such a restriction of the coefficients Cλµν is completely
unjustified. Moreover, in this way one recovers also the case of the Dirac particle, since (2.33) allows that
the total antisymmetry of the spin tensor. Because of this, and the fact that precisely Dirac particle is the
major candidate for the measurement of the torsion, in the next chapter we will study in detail the case
of the Dirac c particle in the single-pole approximation, and discover a whole series of very interesting
results.



Chapter 3

EXAMPLES

Let us now turn to the analysis of the special cases and examples which demonstrate the variety of
the dynamics following from our equations of motion. We will begin with the particle, and then turn to
the string, concentrating mostly on the realistic case of 4-dimensional spacetime.

3.1 Particle

The particle represents the case of a 0-brane, and it sweeps out a worldline in spacetime. We
parametrize this line with a single parameter ξ0, and it can be chosen such that in every point of the
worldline the induced metric is γ00 ≡ γ = −1. This is a common gauge condition, and the coordinate
ξ0 is usually denoted τ and called proper time. Since Latin indices a, b, c, . . . in this case take only one
value, zero, we can eliminate them from the equation of motion and the angular momentum precession
equation. Those two equations can then be written as:

∇
[
muµ + 2uλ

(
∇Jµλ +Dµλ

) ]
= uνJλρRµνλρ +

1

2
Cνρλ∇µKρλν ,

and
P⊥

µ
λP⊥

ν
ρ

(
∇Jλρ +Dλρ

)
= 0.

There are no boundary conditions, since the worldline has no boundary. The scalar m is called mass,
while Jµν is the total angular momentum of the particle.

Particle in the pole-dipole approximation. In order to illustrate the meaning of the second extra
symmetry, let us consider the motion of the particle with the assumption that Cλµν ∼ Jµν ∼ O1. In
analogy to (2.24) we calculate the variation of the boost component of the angular momentum, Jµνuν ,
with respect to the second extra symmetry:

δ2 (Jµνuν) =
m

2
εµ⊥.

From here one can see that this component can be gauged away, and it follows that Jµν = Jµν⊥ . Once we
have established this, contracting the equation of motion with uµ we obtain

∇m = Dµ
⊥∇uµ −

1

2
Cνρλ∇Kρλν ∼ O1,

where we have used that Dµν ≡ Dµν
⊥ + D

[µ
⊥u

ν]
. Substituting this back into the equation of motion we

then obtain that ∇uµ ∼ O1, which can be used further since in the pole-dipole approximation we neglect
terms of order O2. After a short calculation, we obtain the equations of motion

∇
(
muµ −Dµ

⊥

)
= uνJλρ⊥ Rµνλρ +

1

2
Cνρλ∇µKρλν , ∇Jµν⊥ +Dµν

⊥ = 0,

20
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while the derivative of the mass reduces to

∇m = −1

2
Cνρλ∇Kρλν ∼ O1.

A few comments are in order. First, we see that the spin-orbit interaction has completely vanished.
What remains are the interactions between the total angular momentum with curvature and spin with
torsion. Second, angular momentum and mass are not conserved, precisely because of the spin–torsion
interaction.

If there is no torsion in spacetime, these equations reduce to

m∇uµ = uνJλρ⊥ Rµνλρ, ∇Jµν⊥ = 0, ∇m = 0.

Mass and angular momentum are conserved, and the equation of motion differs from a geodesic only
due to the interaction of the angular momentum with curvature. Since the spin couples exclusively with
torsion (except for the piece present in the total angular momentum), the equations of motion for the
scalar particle in the spacetime with curvature and torsion will look the same as these, knowing that in
that case Jµν⊥ ≡ L

µν
⊥ .

Finally, if the spacetime features no curvature and no torsion, the equation of motion reduces to a
straight line.

Particle in the single-pole approximation. Let us now discuss a much more interesting situation,
namely the particle in spacetime with curvature and torsion in the single-pole regime. This regime differs
from the above analysis in the assumption that now Cλµν ∼ O0, so we do not have the possibility to fix
the gauge of the second extra symmetry. The equations of motion have the form

∇
[
muµ + 2uλ

(
∇Sµλ +Dµλ

) ]
= uνSλρRµνλρ +

1

2
Cνρλ∇µKρλν ,

P⊥
µ
λP⊥

ν
ρ

(
∇Sλρ +Dλρ

)
= 0,

where now we also have the relation (2.33):

Cλµν = 2uλSµν + Sλµν .

From here we see that a point particle with spin does not follow a geodesic, both because the spin-
orbit interaction and because of the interaction of spin with curvature and torsion. However, we can
discuss the important special case of the Dirac particle, which suggests that one should be careful with
this conclusion about the trajectory. Namely, it can turn out that the field equations for matter place
additional restrictions on the kink solution, which would imply that Cλµν ∼ O1. This can be neglected
in the single-pole approximation, which means that the equation of motion still reduces to the geodesic
equation. In order to see that such a possibility exists, let us study in detail the case of a Dirac particle.

Dirac particle case. One of the basic characteristics of the Dirac field is that its spin tensor σλµν is
totally antisymmetric. This property is inherited by the coefficients Cλµν , so from (2.33) one can obtain
a key result:

Sµν = 0. (3.1)

This result has far reaching consequences. Substituting it into the equation of motion and the spin
precession equation, we obtain

∇
(
muµ +K [µsν]uν

)
+

1

2
sν∇µKν = 0, K

[µ
⊥ s

ν]
⊥ = 0,

where we have introduced the spin vector sµ as Sµνρ ≡ eµνρλsλ, as well as the axial component of the
contorsion Kµ ≡ eµνρλKνρλ. It is immediately visible from the equation of motion that both spin-orbit
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and spin-curvature interactions have vanished. Only the interaction of the spin with the axial component
of the contorsion has remained. The particle trajectory is still not a geodesic, but only because of that
remaining interaction. We can therefore conclude that in torsionless spacetime the Dirac particle follows
a geodesic. Regarding the spin precession equation, it transforms into an algebraic constraint between
the orthogonal components of spin and contorsion, which requires that the spin be always oriented in the
direction of the external field Kµ

⊥. This is, to put it mildly, a weird behavior of the Dirac particle, and
one obvious (though not the only) way to resolve this situation is based on the assumption that the spin
of the Dirac particle in the single-pole approximation should be neglected. In order to see if this is really
a legitimate assumption, it is necessary to construct a concrete model in the framework of some concrete
theory.

As a simplest candidate for the analysis, let us choose the theory of free Dirac field in Minkowski
spacetime. The Lagrangian is:

L =
i

2

[
ψ̄γµ∂µψ −

(
∂µψ̄γ

µψ
)]
−mψ̄ψ.

Dirac γ matrices are defined so that they satisfy the standard anticommutation relations {γµ, γν} =
−2ηµν , while γ5 ≡ iγ0γ1γ2γ3. Since this is a free field theory, there are no self-interactions and therefore
no kink solutions. Because of this we model the particle as a wave packet, which represents a configuration
of the Dirac field well localized in space, while inside it still resembles a plane wave. The size of the packet
` is considered in the limit `→ 0, so that we would implement the idea of the single-pole approximation.
The wave packet dissolves as time passes, but in the limit λ/` → 0 the speed of the dissolution can be
considered small (λ represents the dominant wavelength of the packet). For concreteness, let us construct
the wave packet as follows. At the initial moment t = 0, we choose the following field configuration,

ψ(~r, 0) = Ae−
r2

`2 ψp(~r, 0)

where

ψp(x) ≡
√
k0 +m

2m


1
0
k3

k0+m

0

 eikµxµ
is one solution of the Dirac equation (iγµ∂µ −m)ψ = 0, i.e. a plane wave which travels along the x3-

axis (here k1 = k2 = 0 and k0 ≡
√
m2 + (k3)2) while its spin is polarized “up”, for concreteness. The

spin factor is written in the conventional Dirac representation of γ-matrices. The exponential function
multiplying the plane wave in ψ(~r, 0) serves to cut out one small piece and to define its size `, while
A represents the overall amplitude of the packet. The wavelength of the packet, λ, corresponds to the
wavelength of the plane wave, 1/|~k|.

Using the Dirac equation we can calculate the time derivatives of this field configuration, and thus
determine its evolution. However, we are actually interested to calculate the currents τ (µν) and σλµν ,
which depend mostly on the first derivatives:

τµν = i
[
ψ̄γµ∂νψ −

(
∂νψ̄

)
γµψ

]
− 2ηµνL, σλµν = ελµνρψ̄γ5γρψ. (3.2)

Eliminating the time derivatives using the Dirac equation, a straightforward calculation gives the expres-
sions for both currents at the moment t = 0,

τ (00) = −2|A|2e−
2r2

`2
(k0)2

m
, τ (33) = −2|A|2e−

2r2

`2
(k3)2

m
, (3.3a)

τ (0α) = −2|A|2e−
2r2

`2
k0

m

(
k3η3α − xβ

`2
εαβ3

)
, (3.3b)

σ123 = −|A|2e−
2r2

`2
k3

m
, σ012 = −|A|2e−

2r2

`2
k0

m
, (3.3c)
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while all other components vanish. Integrating these expressions over the 3-dimensional space we can
obtain the monopole coefficients Bµν and Cλµν , while multiplying with xα and integrating we obtain
corresponding dipole coefficients, and so on. The nonzero monopole coefficients are

B00 = −|A|2
√
π3

2
`3

(k0)2

m
, B33 = −|A|2

√
π3

2
`3

(k3)2

m
, B03 = −|A|2

√
π3

2
`3
k0k3

m
,

C123 = −1

2
|A|2

√
π3

2
`3
k3

m
, C012 = −1

2
|A|2

√
π3

2
`3
k0

m
,

while the sole nonzero dipole coefficient is

B012 = −B021 = −1

4
|A|2

√
π3

2
`3
k0

m
.

Quadrupole and higher terms are proportional to |A|2`4k3, to |A|2`4(k3)2, or to higher degrees of `.
Now let us construct the limit which corresponds to to the single-pole approximation. First, we see

that the monopole and dipole terms are of the order `3 while the quadrupole and higher terms are of
higher order. The amplitude A can be chosen such that in the limit `→ 0 monopole terms are of order
of unity,

|A|2 =
const

`3(k3)2
≡ const

`3
λ2,

since k3 ∼ k0 ∼ λ−1. Now we have

B00 ∼ B33 ∼ B03 ∼ 1, C123 ∼ C012 ∼ B012 ∼ λ,

while quadrupole and higher multipoles are of the order `, `λ and higher in `. The limit `→ 0 eliminates
all of them and implements the pole-dipole approximation, because only monopole and dipole terms
remain. However, we have already noted that the stability of the wave packet can be established only if
λ � `, since only then the interior of the packet still resembles a plane wave. In other words, the limit
` → 0 implies also λ → 0, so we see that dipole terms also vanish. Thus the limit ` → 0 establishes the
single-pole approximation.

At this point we arrive to the crucial insight — the spin monopole terms have vanished together
with the orbital dipole terms in this limit. The reason for this is easy to see, since 2B012 = C012, which
represents a constraint between the monopole spin and the dipole stress-energy moment. The consequence
of this is that the spin does not participate in the effective equation of motion for the wave packet, which
eliminates the spin-orbit interaction and we are left with the equation for the straight line.

This example explicitly demonstrates that Cλµν ∼ O1 for the free Dirac particle. This property is
completely independent from the geometry of spacetime, so we can conclude that the point particle with
spin 1/2 follows a geodesic in the space with curvature and torsion. Of course, this conclusion has been
demonstrated on an example, but it can be generalized in the following way. One can easily see that
the constraint 2B012 = C012 is simply a single-pole approximation of a more general relation, which the
currents (3.3) satisfy exactly :

τ (0α) =
1

2
∂βσ

0αβ , α = 1, 2.

Covariantization of this equation leads to a very interesting requirement for the currents:

τµνjν ∝ jµ, (3.4)

where jµ ≡ ψ̄γµψ is the current of the U(1) symmetry for the Dirac field, and in the above example it is
proportional to the wave vector kµ. From this requirement and the total antisymmetry of the Dirac spin
tensor σλµν one can derive in the comoving frame jα = 0 that

xατ (0β) − xβτ (0α) = σ0αβ + div.
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Integrating over 3-dimensional space, the divergence term vanishes while the remainder reduces to the
statement that the spin monopole moment is equal to the orbital dipole moment, and therefore of the
order O1. In other words, if a given theory has a kink solution which satisfies the condition (3.4), its spin
must be of the order O1, from which we conclude that the kink in the single-pole approximation moves
along a geodesic.

The equation (3.4) can also be used as a criterion for the non-Dirac fields. Since all fields (except
the real scalar field) have at least the U(1) symmetry, there exists a corresponding current jµ, so the
condition (3.4) is well defined. In the comoving system we can now derive again the relation between the
spin and orbital angular momentum, but since the spin tensor does not need to be totally antisymmetric,
the relation has a slightly different form:

xατ (0β) − xβτ (0α) = σ[β0α] + x[α∂0σ
00β] + div.

The integration over a 3-dimensional space removes the divergence, while the second term on the right-
hand side becomes the dipole term of the spin tensor, and as such already of the order O1 or higher, so
one can again conclude that the spin monopole moment is of the order O1, i.e. negligible in the single-
pole approximation. From this one can conclude that the spin-orbit, spin-curvature and spin-torsion
interaction terms all vanish from the equation of motion, which reduces it again to a geodesic equation.
Of course, all this is valid under the assumption that (3.4) actually holds for the given kink solution of
a given field, which need not be the case. If this equation is not satisfied, the trajectory can in principle
be different from a geodesic.

At the end of this analysis we can speculate that perhaps the condition (3.4) is satisfied always when
the matter is considered in the single-pole approximation. Apparently, there is nothing particularly special
in the statement that all currents of a point particle flow in the direction of its motion, which includes
the stress–energy tensor τµν . This would mean that the test point particles always follow geodesics,
regardless of the spin, curvature and torsion. Of course, such a speculation is an open problem which
might deserve further research, but we will not pursue it further in this work.

This concludes the analysis of the equations of motion of a particle. In what follows we turn to the
analysis of the motion of a string and other extended objects.

3.2 String

The trajectory of a string, i.e. a 1-brane, is a two-dimensional worldsheet with a one-dimensional
boundary (if there is one). Similarly to the particle case, the boundary can be parametrized with the
proper time τ , while the boundary indices i, j, . . . take only the zero value, so we will not write them
explicitly. The induced metric on the boundary, h, and the corresponding tangent vector va satisfy

h = vava = −1 .

The only particularity of the string dynamics, compared to other branes, is the possibility to employ
the second extra symmetry in order to gauge away the coefficients N ij which live on the string boundary.
Of course, in order for this to be possible, we have to assume that the coefficients of the spin tensor Cλµν

are of the order O1. Since the boundary is one-dimensional, we have only one component N ≡ N00, and
its variation is

δ2N = −mabvavbε ,

where ε ≡ εana is the only free gauge parameter at the boundary. From this we see that we can fix the
gauge N = 0, while the parameters εa satisfy the restriction εana|∂M = 0.

In what follows we will discuss some concrete types and configurations of a string, in order to illustrate
dynamics described by the equations of motion.
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Nambu-Goto string. Let us first turn to the important special case of the motion of the Nambu-Goto
string in spacetime with curvature and torsion. Nambu-Goto string is by definition an infinitely thin
spinless string, with the effective stress–energy tensor given as mab = Tγab, where T is a constant called
the string tension.

The condition that the string is infinitely thin allows us to work in the single-pole approximation. As
we have already explained in the discussion of the single-pole approximation, the equations of motion
and boundary conditions are obtained from (2.29), (2.30) and (2.31) substituting Jµνa → Sµνa and

N ij → Eij ≡ Eµabnav(i
µ v

j)
b . In this way the big equation of motion (2.29) becomes

∇b
[
mabuµa − 2ubλ

(
∇aSµλa +Dµλ

)
+ uµc u

c
ρu
b
λ

(
∇aSρλa +Dρλ

) ]
=

= uνaS
λρaRµνλρ +

1

2
Cνρλ∇µKρλν .

The condition that the string has no spin reduces the equation further into the form

∇b
(
mabuµa

)
= 0.

Finally, the choice of the mass tensor mab = Tγab reduces the equation of motion to the familiar equation
for the extremal surface

∇auµa = 0.

We see that the explicit interaction with the curvature of spacetime vanishes, while the only remaining one
is the implicit interaction through the definition of the covariant derivative. Also, torsion has completely
vanished from the equation, since it couples only with spin. In other words, the Nambu-Goto string
does not feel the presence of torsion, while the presence of curvature manifests itself exclusively through
Christoffel connection.

The spin precession equation
P⊥

µ
ρP⊥

ν
σ (∇aSρσa +Dρσ) = 0,

is homogeneous in the spin tensor, so it is identically satisfied if there is no spin. What remains are the
boundary conditions,

Sµνanνna

∣∣∣
∂M

= 0, P⊥
µ
λP⊥

ν
ρnaS

λρa
∣∣∣
∂M

= 0,

∇ (Evµ − 2Sµνanavν)
∣∣∣
∂M

=

= nb

[
mabuµa − 2ubρ (∇aSµρa +Dµρ) + uµc u

c
σu

b
ν (∇aSσνa +Dσν)

]∣∣∣
∂M

,

which are also identically satisfied when Cλµν = 0, except the last one which reduces to the form

γabnbu
µ
a

∣∣∣
∂M

= 0.

This is precisely the standard Neumann boundary condition for the free Nambu-Goto string. We can
therefore see that our equations contain all information about the Nambu-Goto string as their special
case.

Rigid rotating rod. Let us now study a massive rod which rotates around its longitudinal axis. For
simplicity, we will work in Minkowski spacetime (Rµνλρ = 0 and Tλµν = 0), and in Cartesian coordinates
(gµν(x) = ηµν).

We seek a simple solution of the equations of motion which describes the rod at rest along the x-axis
between the points x = L/2 and x = −L/2. We want it to rotate around its longitudinal axis, so we
choose

Ja ≡ J23a = −J32a
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to be the only nonzero components of the total angular momentum current. We can fix the coordinates
of the worldsheet ξa using a gauge condition for the reparametrization symmetry za(ξ) = ξa, while the
boundary coordinate λ matches the proper time τ . As a consequence of all this, we have:

uµa = δµa , va = δa0 , γab = ηab, h = −1 .

It is easy to verify that this represents a solution of the equations of motion (2.29), (2.30) and the
boundary conditions (2.31), provided that

∂am
ab = 0 , ∂aJ

a = 0 , (3.5a)

and
ma1(ξ1 = ±L2 ) = 0 , J1(ξ1 = ±L2 ) = 0 . (3.5b)

Equations (3.5a) tell us that the effective stress–energy tensor mab and the angular momentum current
Ja are conserved quantities. Equations (3.5b) tell us that there is no flow of energy, momentum and
angular momentum through the end-points of the rod.

The only thing that is maybe not completely obvious in this example is that the rod is actually
rotating around its longitudinal axis. In order to verify this, let us compute the total angular momentum
of the whole rod:

Mµν ≡ 1

2

∫
d3x

(
xµτ (0ν) − xντ (0µ)

)
, (3.6)

from where we obtain

M23 =

∫ L
2

−L2
dxJ0(t, x) , M12 = M13 = 0 .

Therefore, the rod really rotates in the y− z plane, i.e. around the x-axis. Besides this, the total energy
of the rod, defined as

E =

∫
d3x τ00 , (3.7)

matches its total mass:

E =

∫ L
2

−L2
dx m00(t, x) .

The absence of the rotational kinetic energy is the consequence of the fact that Ja ∼ O1. Indeed,
the rotational energy is quadratic in Ja, which contributes to the total energy via an O2 term, which
is neglected in the pole-dipole approximation. Let us note at the end of this example that the total
angular momentum Mµν and the total energy E are conserved charges. This immediately follows from
the equations (3.5a) and the boundary conditions (3.5b).

A simple model of a meson. In this example we will consider a Nambu-Goto string with no internal
angular momentum, with two massive particles connected to its ends. This can be understood as a very
simple classical model of a meson, in which the quark-antiquark pair is described with the two particles,
while the QCD gluon field connecting them is described via a Nambu-Goto string. For simplicity, we will
again work in Minkowski spacetime.

The stress–energy tensor is given as a sum of two terms,

τ (µν) = τ (µν)
s + τ (µν)

p , (3.8a)

where

τ (µν)
s =

∫
M
d2ξ
√
−γBµνs

δ(4)(x− z)√
−g

, (3.8b)

τ (µν)
p =

∫
∂M

dλ
√
−h
[
Bµνp

δ(4)(x− z)√
−g

−∇ρ
(
Bµνρp

δ(4)(x− z)√
−g

)]
. (3.8c)
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The first part of the stress–energy tensor describes the string, without internal angular momentum. Since
we want the string to be of Nambu-Goto type, we choose σλµνs = 0 and we turn off the dipole term in

τ
(µν)
s , while for the mass tensor we choose mab = Tγab. This gives us the standard Nambu-Goto equation

of motion
∇auµa = 0. (3.9)

The second part of the stress–energy tensor describes the particle in the pole-dipole approximation, with
the restriction that its trajectory matches the boundary of the string. The boundary conditions for the
string can then be reinterpreted as the equations of motion for the two particles:

p⊥
µ
λ p⊥

ν
ρ

d

dτ
Jλρ = 0 , (3.10a)

d

dτ

(
mvµ + 2vν

d

dτ
Jµν

)
= Tnauµa . (3.10b)

Here we have chosen again the gauge h = −1, λ ≡ τ on the boundary, while p⊥
µ
ν ≡ δµν + vµvν represents

the orthogonal projector of the string boundary, and it should not be mixed with P⊥
µ
ν . The boundary

conditions (3.10) are different from the equations of motion for the free particle both by the presence of
the spin-orbit interaction (which cannot be gauged away this time) and by the presence of a term on the
right-hand side which represents the force which the string exerts on the particle. Let us note that these
equations of motion are valid for each of the two particles individually, and that the masses and angular
momenta of the two particles are a priori different, since the boundary of the string worldsheet consists
by assumption of two nonintersecting curves.

Next, we will impose the following condition to the angular momenta of the particles,

Jµνvν = 0, (3.11)

which eliminates the boosts. Physically, this condition means that the center of mass of the particle
matches the end-point of the string, up to O2 precision. If we were not to impose this condition, we
would allow for the two particles to “swing” on the string. This is physically acceptable, but in this
example we are not interested in such type of motion. Given that this condition reduces the number of
independent components of the angular momentum to three, we can introduce new notation,

~J ≡ ε0λρµJλρ~eµ

which collects these three components into one spacelike 3-vector.
Let us look for a simple solution of the string equation of motion (3.9), where the string has the shape

of a straight line. With no loss of generality, we can choose coordinates xµ and ξa such that the equation
of the world sheet has the form

~z = ~α(t)σ, z0 = t,

where ξ0 ≡ t and ξ1 ≡ σ have the domains (−∞,∞) and [−1, 1], respectively. Assuming also that the
length of the string L ≡ 2|~α| and the velocity of the string end-points V ≡ |d~α/dt| are constant, the
equation (3.9) reduces to

d2

dt2
~α+ ω2~α = 0, ω ≡ 2V

L
.

This equation describes uniform rotation in a plane. Choosing the latter to be the x− y plane, we easily
obtain the solution

~α =
L

2
(cosωt~ex + sinωt~ey) . (3.12)

Consider now the boundary conditions (3.10). Without getting into the details of the straightforward
but cumbersome calculation, by solving these equations we obtain that the particle’s angular momentum
satisfies

d ~J

dt
= 0, ~J = J~ez, (3.13)
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while its velocity is

V =
1√

1 + 2µ
TL

, µ ≡ m+

√
2T

mL
J. (3.14)

Since each particle has its own mass and angular momentum, we will denote them as m± and J± for the
particle at the point σ = ±1, respectively. Given that both particles have the same speed, their masses
must satisfy the condition µ+ = µ− ≡ µ. We see that the masses themselves, m±, are different despite
the fact that the center of mass for the whole system is at the string’s middle-point σ = 0. This is a
consequence of the nontrivial spin-orbit interaction which contributes to the total energy of the system.

The analysis of the expression (3.14) gives that V < 1, as expected. In the limit µ → 0, the ends
of the string move with the speed of light, describing the dynamics of the Nambu-Goto string with the
Neumann boundary conditions. In the limit µ→∞, the ends of the string are at rest, which represents
the example of its dynamics with the Dirichlet boundary conditions.

Total angular momentum and energy of the whole system can be calculated as in the previous example,
using the general formulas (3.6) and (3.7). A straightforward calculation gives:

E = TL
arcsinV

V
+

2µ√
1− V 2

− 2V

L
(J+ + J−) ,

M =
TL2

4

(
arcsinV

V 2
−
√

1− V 2

V

)
+

2µ√
1− V 2

LV

2
+ J+ + J−.

These results have obvious interpretation. The total energy of the system consists of the energy of the
string, energies of the two particles, and the energy of the spin-orbit interactions, respectively. The rota-
tional kinetic energy of the particles, being quadratic in ~J , is negligible in the pole-dipole approximation.
Angular momentum of the system consists of the piece describing the rotation of the string, the piece
which describes the revolution of the two particles, and finally their internal angular momenta.

If we consider the limit in which the masses of the particles are small, the free parameter L can be
eliminated from these above two equations in favor of the total energy E, which leads us to the constraint

M =
1

2πT
E2 + 2 (J+ + J−) . (3.15)

The first term on the right-hand side defines the well-known law of Regge trajectories, while the second
term represents a small correction (of order O1) due to the presence of particles with nonzero angular
momenta at the ends of the string. As one can see, the unique Regge trajectory from the standard string
theory description splits into a whole family of different trajectories. This is an interesting effect, since
in experiments we actually observe that different types of particles are grouped on different trajectories.

Finally, let us discuss also the single-pole approximation of this example. We have already assumed
this approximation for the string, so its equation of motion (3.9) remains the same. As for the particles,
the equations of motion (3.10) now become

p⊥
µ
λ p⊥

ν
ρ

d

dτ
Sλρ = 0 ,

d

dτ

(
mvµ + 2vν

d

dτ
Sµν

)
= Tnauµa ,

where the spin tensor of the particle is constrained by a condition of the type (2.33):

Cλµν = 2vλSµν + Sλµν .

Under the assumption that Sµνvν = 0 all the results of this example remain the same, with the substi-
tution J → S. However, an interesting possibility is the model of the meson consisting of two quarks.
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Quarks are Dirac particles, so their spin tensor is totally antisymmetric, and as a consequence we again
have the result (3.1):

Sµν = 0.

All nonzero components of the spin of the Dirac particle are inside the Sλµν term, which is completely
decoupled from the above equations of motion. We have seen this already in the analysis of the Dirac
particle in the previous section, where the spin was coupled exclusively with torsion. Repeating the
derivation of the Regge trajectories law (3.15) we now obtain

M =
1

2πT
E2,

since the component of the spin which would enter the correction term is actually equal to zero. In other
words, in the single-pole approximation there is no splitting of the Regge trajectory into a family, for
Dirac particles. Of course, since we can see more than one such trajectory in experiment, we conclude that
the single-pole approximation is insufficient to describe the splitting effect. This can also be understood
as an indication (suggested by the example) that the quarks inside the meson cannot be treated as point
particles. Of course, this example is just one very gross model, and further analysis in necessary to verify
these conclusions more reliably.

3.3 Conclusions

In this paper we have studied the motion of extended objects in an external gravitational field with
torsion. The natural formalism which allows for the analysis of these problems and the derivation of the
equations of motion is called the multipole formalism and it describes the matter localized around some
p-brane in spacetime. The main computational tool used for this is related to the expansion of a given
function into a power series of the derivatives of the Dirac δ function around that p-brane. The δ expansion
represents a powerful apparatus, mainly because it allows for a manifestly covariant notation, provides
the possibility for the systematical analysis of all the symmetries in the theory, and because it works for
the arbitrary dimension p of the p-brane. This last property is very important, since it establishes the
main original contribution of this research — derivation of the effective equations of motion not only for
pointlike, but also for the extended objects.

Because of all this, the first chapter of this work is devoted to the multipole formalism. After a short
introduction to the Riemann-Cartan geometry, we have introduced the notion of the expansion of a given
function into a power series in the derivatives of the δ function, written it in the manifestly covariant
way. Next we have defined the single-pole and pole-dipole approximations which consist of the truncation
of the δ expansion beyond the first and second term, respectively. The chapter was concluded with the
analysis of the symmetries which exist in the pole-dipole approximation, where besides the spacetime
and reparametrization diffeomorphisms we have found two extra gauge symmetries. The first reflects the
fact that in the covariant notation we have surplus variables, while the second reflects the freedom for
the choice of the surface around which the δ expansion is being performed.

The second chapter concentrated on the application of the multipole formalism to the description
of matter in the external gravitational field. We have started from two fundamental assumptions —
that the matter Lagrangian is invariant with respect to the local Poincare group, and that the matter
is localized around some p-dimensional hypersurface M in spacetime. The first assumption enforces
the validity of the covariant conservation laws for the stress–energy tensor and the spin tensor, while
the second assumption enables us to expand these two currents into the δ series and discuss them in
the single-pole and pole-dipole approximations. After the analysis of the independent variables and the
convenient form of the covariant conservation laws, we moved on to the derivation of the equations of
motion for the spinless p-brane in the pole-dipole approximation. The resulting equations of motion and
boundary conditions turn out to depend on several free parameters, which have been interpreted as the
effective (p+ 1)-dimensional stress–energy tensor of the brane, the p-dimensional stress–energy tensor of
its boundary, and the current of the internal orbital angular momentum of the brane. We have discussed



CHAPTER 3. EXAMPLES 30

the effects of the first and second extra symmetries from the first chapter. Then we have turned to the
derivation of the equations of motion and boundary conditions for the general case of a p-brane with spin.
The resulting equations represent the central result of the paper. The free parameters which enter the
equations are again the effective stress–energy tensors for the brane and its boundary, but now instead
of the orbital angular momentum we find the total angular momentum current, which is the sum of the
orbital and spin parts. In addition, the free parameters are the spin tensor currents. As an important
special case, we have discussed in detail the single-pole approximation, which is characterized both by
the absence of the internal orbital angular momentum and the interesting relation which constrains the
possible form of the spin currents.

The third chapter contains several examples. The attention was first focused on the case of the particle
in the spacetime with curvature and torsion, where the connection between the second extra symmetry
and the center of mass of the particle was illustrated. Then we discussed the case of the particle with
the spin in the single-pole approximation. Special attention was devoted to the example of the Dirac
particle, because it turns out that the spin of the Dirac particle couples neither with its orbit nor with
the spacetime curvature, in contrast to other particles. The form of the equations of motion suggests the
possibility that the spin of the Dirac particle is negligible in the single-pole approximation, so we gave
a short analysis of a concrete model of a Dirac field wave packet where one can see that this is indeed
the case. This property has then been rewritten into the form of a covariant criterion for the comparison
of the monopole spin moment with the dipole orbital moment of the particle. It was then noticed that
this criterion can be applied to the non-Dirac fields. If it is satisfied, the particle must follow a geodesic,
since its spin is negligible. If it is not satisfied, the orbit of the particle deviates from a geodesic, due to
the interaction of the spin with the spacetime curvature and torsion.

Then the attention turned to the examples of a string, as the most interesting extended object. We
have first demonstrated that the general equations of motion contain the Nambu-Goto string dynamics
as a special case, together with the Neumann boundary conditions. Then we gave a short analysis of a
massive rod which is at rest in spacetime, while rotating around its longitudinal axis, as a basic example
of a string which has nontrivial internal angular momentum. After that our attention turned to the
example of a Nambu-Goto string with two massive spinning particles attached to its ends. This example
is especially interesting since it can be considered as one gross classical model of a meson, where two quarks
are modeled with two spinning particles, while the QCD gluon field connecting them is modeled with a
Nambu-Goto string. The equations of motion have been explicitly solved for one simple configuration
of the system, after which we discussed limits of vanishing and infinite masses of the two particles, as a
demonstration of the situations corresponding to the Neumann and Dirichlet boundary conditions for the
Nambu-Goto string, respectively. We have also calculated the total energy and angular momentum of
the system, from which we deduced the law of Regge trajectories with a correction stemming from from
the internal angular momenta of two particles. The corresponding single-pole approximation was also
discussed, with two Dirac particles at the end of the string, where the correction term vanishes. This is a
consequence of the fact that the spin of the Dirac particle is negligible in the single-pole approximation,
as was discussed in more detail in the Dirac particle case.

We finish this exposition by mentioning some open questions and further research directions. One
interesting direction represents the analysis of the criteria for the comparison of the spin and orbital
angular momentum, which was derived during the analysis of the Dirac particle. Starting from the
question for which fields this criterion is satisfied and under which conditions, through the analysis of its
form, to various speculations that it might be satisfied always and for all fundamental fields. This would
mean that a strictly pointlike particle cannot have nonzero spin, regardless of the type of the field it is
made of.

Besides this, various properties of complex systems may be interesting. Namely, in analogy to the
last example in which the system consisted of the string and two particles attached to its ends, one can
study various other configurations — a string attached to a brane, two branes connected with a string,
etc. The dynamics of these kind of systems is certainly interesting from the point of view of string theory
and cosmology.

Also, one can discuss interactions — a situation in which one string splits into two, or when two



strings combine into one. In a similar way one can analyze the interactions of other branes, including the
particle — decay, capture, scattering and other multiparticle processes.

Finally, one can study the general equations of motion for a p-brane in more detail, classify the corre-
sponding types of matter fields which constitute the brane. This can find applications in all investigations
where extended objects appear, for example in string theory, astrophysics, cosmology, etc.
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