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Abstract

The Mathisson-Papapetrou method is originally used for derivation of the particle
world line equation from the covariant conservation of its stress-energy tensor. We
generalize this method to extended objects, such as a string. Without specifying
the type of matter the string is made of, we obtain both the equations of motion
and boundary conditions of the string. The world sheet equations turn out to
be more general than the familiar minimal surface equations. In particular, they
depend on the internal structure of the string. The relevant cases are classified
by examining canonical forms of the effective 2-dimensional stress-energy tensor.
The case of homogeneously distributed matter with the tension that equals its
mass density is shown to define the familiar Nambu-Goto dynamics. The other
three cases include physically relevant massive and massless strings, and unphysical
tachyonic strings.

1. Introduction

The original motivation for introducing strings in particle physics came
from the analysis of meson resonances. As it appears, the known resonances
follow the Regge trajectories pattern. In order to explain that, the meson
resonances are viewed as excited 2-quark bound states. It has been shown
that relativistic rotating string with light quarks attached to its ends indeed
reproduces the above pattern. The string is characterized by the tension
alone, and has no other structure. It was realized later that realistic field
configurations with such properties really exist (for example, [1]).

Our motivation for considering stringy shaped matter in curved back-
grounds is twofold. First, as we have already explained, realistic strings
(like flux tubes) are really believed to exist, and to be relevant for the de-
scription of hadronic matter. Second, the basic Nambu-Goto string action
[2, 3] is in literature often modified to include interaction with additional
background fields. Apart from the target-space metric, the antisymmetric
tensor field Bµν(x) and the dilaton field Φ(x) are considered [4, 5, 6, 7].
While spacetime metric has obvious geometric interpretation, the back-
ground fields Bµν(x) and Φ(x) do not. The attempts have been made to
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interpret Bµν and Φ as originating from the background torsion and non-
metricity, respectively [8, 9, 10, 11, 12]. Thus it seems that string dynamics
in target-spaces of general geometry is worth considering.

In this paper, we shall restrict our considerations to the simplest case of
purely Riemannian spacetime. Thus, the geometry is given in terms of
the metric tensor alone, and the dynamics is governed by the Einstein’s
equations which imply that the stress-energy tensor of matter fields is sym-
metric, T µν = T νµ, and covariantly conserved, ∇νT

µν = 0. This can be
rewritten in the more suitable form

∂ν(
√−g T µν) + Γµ

ρν

√−g T ρν = 0, (1)

and will be the starting point in our analysis of motion of extended objects
in curved spacetime.

The method we use is a straightforward generalization of the Mathisson-
Papapetrou method for pointlike matter [13, 14]. It boils down to the
analysis of the covariantly conserved stress-energy tensor of matter fields,
without specifying their nature. The basic assumption used is the existence
of a stringlike localized kink solution in a curved background. Then, the
world sheet effective equations of motion are obtained in the approximation
of an infinitely thin string.

The layout of the paper is as follows. In Sec. 2., the point particle is consid-
ered as a demonstration of our method and conventions. The known result
is reproduced, but the emphasis is put on the fact that the mass parameter
transforms as 1-dimensional stress-energy tensor. In Sec. 3., the effective
world sheet equations are derived from the covariant conservation law of
the stress-energy tensor of matter fields. Instead of the mass parameter
in the point particle case, the effective 2-dimensional stress-energy tensor
mab appears to characterize the internal structure of the string, and gives
rise to different equations of motion. If the string is open, the world sheet
equations also include some boundary conditions. Sec. 4. is devoted to the
analysis of possible canonical forms of mab. In Sec. 5. we give our final
remarks.

Our conventions are as follows. Greek indices from the middle of the al-
phabet, µ, ν, . . ., are the target-space indices, and run over 0, 1, 2, 3. Latin
indices a, b, . . . are the world sheet indices and run over 0, 1. The target-
space and world sheet coordinates are denoted by xµ and ξa, respectively.
The target-space and world sheet metric tensors are denoted by gµν(x)
and γab(ξ), respectively. The signature convention is defined by ηµν =
diag (1,−1, . . . ,−1), ηab = diag (1,−1).

2. Particle dynamics

We begin with the treatment of a point particle in a curved background
spacetime. The problem was studied in the early days of relativity by
Einstein, Infeld, Hoffman, Mathisson, Papapetrou and others [13, 14, 15,
16, 17, 18]. Here, we formalize the calculations, and adjust the algorithm
for the case of a string in the next section.
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First, we need a general form of the stress-energy tensor, suitable for the
description of a point particle. Let us introduce a timelike curve xµ = zµ(τ)
in spacetime, with τ an arbitrary parameter. Expand T µν(x) into the δ
function series around the point ~x = ~z(τ), using the formalism given in the
Appendix of [19]:

T µν(t, ~x) =

∫

dτ bµν(τ)
δ(4)(x − z(τ))√−g

+

+

∫

dτ bµνρ(τ)∇ρ
δ(4)(x − z(τ))√−g

+ . . .

Now, we introduce the basic assumption about matter. It is localized
around the line zµ(τ), ie. the stress-energy tensor drops exponentially to
zero as we move away from the line. As a consequence of this assumption,
each coefficient in the expansion is smaller then previous ones. In the low-
est approximation (the so called single pole approximation), all b-s except
the first are neglected, and we end up with

√−g T µν(x) =

∫

dτ bµν(τ) δ(4)(x − z(τ)) . (2)

Since this equation is covariant, we can infer the transformation properties
of bµν . It is a tensor with respect to general coordinate transformations,
and scalar with respect to world line reparametrizations.

Equation (2) describes matter localized around the line zµ(τ). Now we
look for the solution of (1) in this form, where bµν(τ) and zµ(τ) are the
unknown functions to be determined. Using the procedure explained in
detail in [19], we obtain two resulting equations. One determines bµν as a
function of zµ(τ) and an arbitrary coefficient m(τ):

bµν = m uµ uν . (3)

The other is a differential equation for zµ(τ):

d

dτ
(muµ) + mΓµ

ρνu
ρuν = 0 , (4)

which determines the world line. It contains the undetermined m(τ), but
this coefficient is constrained by the very same equation. Indeed, the pro-
jection of (4) on the tangent vector uµ can straightforwardly be brought to
the simple form

dm

dτ
= 0 . (5)

We see that m is a constant of motion, and consequently, it can easily
be eliminated from the world line equation, which becomes the standard
geodesic equation.
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The world line equation we have obtained is manifestly covariant with re-
spect to both general coordinate transformations and world line reparame-
trizations. Thus it is easy to deduce that m, beside being spacetime scalar,
transforms as a second rank contravariant tensor with respect to world line
reparametrizations. This gives us the idea that m can be viewed as an
effective, conserved, one-dimensional stress-energy tensor of the pointlike
matter. In this respect, m should be considered the particle mass.

All the above results are obtained in the lowest approximation in the δ
function expansion. Keeping the second term (pole-dipole approximation),
or higher order terms, one finds that the world line equation would give
deviations from the geodesic trajectory, as has been studied extensively in
the literature (see, for example [14]). Here, we just prepare the setting for
the study of string dynamics in the next section.

3. String dynamics

The calculations presented in the previous section are well known, and
there are papers [20, 21] which generalize the procedure to include torsion
etc. However, this research has been focused on the particle case, and we
want to address the problem of finding equations of motion of an extended
object, such as string. In this section, we generalize the Papapetrou method
to linelike matter.

In contrast to the particle, the string is an extended, one-dimensional object
whose trajectory is not a world line, but rather a two-dimensional world
sheet M. Let us introduce a two-dimensional surface xµ = zµ(ξa) in space-
time, where ξ0 and ξ1 are the surface coordinates. We shall also frequently
use the notion of the world sheet coordinate vectors and induced metric
tensor:

uµ
a ≡ ∂zµ

∂ξa
, γab = gµνuµ

auν
b .

First we expand the stress-energy tensor into a δ function series around the
world sheet. In the single-pole approximation, we drop all the terms in the
expansion except the leading one, and obtain an expression:

√−g T µν(x) =

∫

d2ξ
√−γ bµν(ξ) δ(4)(x − z(ξ)) . (6)

The coefficients bµν transform covariantly with respect to both target-space
and world sheet reparametrizations. Having this, the equation (1) can be
solved with respect to the unknowns bµν(ξ) and zµ(ξ). Using the procedure
explained in [19], (1) decouples to three equations.

The first one gives a solution for bµν(ξ) in terms of zµ(ξ):

bµν = mabuµ
auν

b . (7)

Here, mab(ξ) are arbitrary coefficients. They transform as scalars with
respect to spacetime diffeomorphisms, and as components of a contravariant
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symmetric second rank tensor with respect to the world sheet reparametri-
zations.

The second one is the boundary condition:

√−γ mab nb uµ
a

∣

∣

∣

∂M
= 0. (8)

Here, na is the outward directed normal to the boundary ∂M. The bound-
ary conditions do not appear if the string is closed, because in that case
∂M = ∅.
The third is a differential equation for zµ(ξ), and determines the world
sheet of the string:

∇a(m
abu

µ
b ) = 0. (9)

Here we make use of the total covariant derivative ∇a, which acts on both
spacetime and world sheet indices (for the latter the induced connection
Γ a

bc is used). Viewed as an equation for the string trajectory, this equation
contains the unknown coefficients mab. It can be shown, however, that mab

are not fully arbitrary. Instead, they are constrained by the very same
equation. To see this, we contract (9) with uc

µ, to obtain

∇am
ac = 0. (10)

Thus, mab is covariantly conserved, symmetric world sheet tensor. As such,
it is seen as the effective two-dimensional stress-energy tensor of the string.

We need to remark that the boundary conditions obtained in this section are
naturally associated with the familiar Neumann boundary conditions of the
conventional string theory. The alternative Dirichlet boundary conditions
are defined by imposing additional constraints on the variation of the string
boundary. Precisely, the string ends are attached to an external p-brane,
which (partially or fully) fixes their trajectories. However, the interaction of
the string with the p-brane violates the covariant conservation of the stress-
energy tensor at the string ends. The natural way to incorporate Dirichlet
boundary conditions is to consider the p-brane and the attached string as
a single object moving in an external gravitational field, but that is out of
scope of this paper. Instead, we assume that the string has nothing else to
interact with, which in turn explains why the derivation of the equations
of motion automatically gives also Neumann boundary conditions.

Next, as opposed to the particle case, the dynamics of a stringy shaped
matter generally depends on its internal structure. Indeed, the two-dimen-
sional stress-energy conservation ∇am

ab = 0 has no unique solution. There
is a variety of possibilities to choose mab, each leading to a different string
dynamics.

Let us note, in the end of this section, that it is possible to extend the whole
discussion to a very general case of a p-brane moving in a D-dimensional
curved spacetime. The equations of motion and boundary conditions are
virtually the same, the only difference being bigger sets of values for world
sheet and target-space indices.
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4. Internal structure of the string

As we have seen in the previous section, the world sheet equations depend
on the type of matter the string is made of. To completely characterize the
string trajectory, we need the type and distribution of its mass tensor mab.
In this section, we shall classify possible canonical forms of mab.

Let us analyze the eigenproblem of the two-dimensional mass tensor mab.
The analogous 4-dimensional analysis has been done in [22]. The eigen-
problem of mab in a general world sheet with metric γab, is defined by the
equation

mabeb = λea,

where ea ≡ γabeb. The existence of nonvanishing eigenvectors ea is guaran-
teed by the condition det[mab − λγab] = 0. It is rewritten as the quadratic
equation

λ2 − ma
aλ + γ det[mab] = 0,

with the discriminant

∆ ≡ (ma
a)

2 − 4γ det[mab].

Because of the indefiniteness of the metric, three cases are possible: ∆ > 0,
∆ = 0, and ∆ < 0. The eigenvectors can be either timelike, spacelike or
null, and the mass tensor mab cannot always be diagonalized.

Let us analyze the behavior of mab in the vicinity of a point on the world
sheet. We shall use such ξa coordinates which ensure γab = ηab, and
Γ a

bc = 0 in the chosen point. If we write mab in a matrix form as

mab =

(

ρ π
π p

)

,

we see that ρ represents energy density along the string, π is the energy flux,
and −p is the string tension. The components of the stress-energy tensor
are subject to the physical condition that energy flux must not exceed the
energy density. Otherwise, matter would travel faster than light [22]. This
must be satisfied in every reference frame, which can be shown to imply
the general conditions on the components of mab:

ρ + p ≥ 2|π|, ρ ≥ p. (11)

In the case ∆ > 0, one can employ a Lorentz transformation that brings
mab to a diagonal form:

mab =

(

λ(1) 0
0 −λ(2)

)

, λ(1) ≥ |λ(2)|, λ(1) 6= λ(2),

where λ(1) and λ(2) are the eigenvalues of mab. This means that there
exists a rest frame, where the energy flux is zero, π = 0, and matter does
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not move. This is the case for the usual massive matter. The energy density
ρ is always positive, and exceeds the absolute value of the tension.

In the case ∆ = 0, there exists a boost that brings mab to the form

mab =

(

λ + µ µ
µ −λ + µ

)

.

Here, λ ≥ 0 is the single eigenvalue, and the Lorentz invariant sign of µ
defines two subcases: µ > 0 and µ = 0. Thus, every nontrivial mab is the
sum of matrices corresponding to the cases λ = 0, µ > 0 and λ > 0, µ = 0.
Let us discuss these two situations in turn.

In the case λ = 0, µ > 0, the only eigenvector of mab is lightlike, and no
rest frame exists. The situation is interpreted as that of a massless matter.
Energy density is positive, and equal to both energy flux and pressure. The
boundary is lightlike.

In the case λ > 0, µ = 0, the mass tensor is not only diagonal, but pro-
portional to the metric: mab = ληab. This can covariantly be written as
mab = λγab, and defines the known Nambu-Goto string. The energy density
is positive and equal to the tension. The boundary conditions reduce to
well known Neumann boundary conditions which imply that the boundary
is lightlike.

The case ∆ < 0 is in contradiction with the conditions (11), and one can
always find a reference frame where energy flux exceeds the energy density.
Thus, the case is unphysical, corresponding to tachyonic matter.

5. Concluding remarks

The analysis in this paper concerns the dynamics of realistic material strings
in curved backgrounds. In the simple case we have considered, the back-
ground geometry is Riemannian, defined in terms of the metric tensor alone.
The dynamics of geometry and matter fields is governed by the Einstein’s
equations.

In the specific setting considered, we assume the existence of a stable string-
like kink configuration. The type of matter fields involved is not specified.
We only assume that matter fields are sharply localized around a line, while
geometry itself is not.

The method used is, basically, the Mathisson-Papapetrou method for point-
like matter [13, 14] generalized to linelike configurations. The world sheet
equations are obtained in the lowest order ie. single-pole approximation.

The results of our analysis can be summarized as follows. The dynam-
ics of a stringy shaped matter in torsionless spacetimes generally depends
on the internal structure of the string. The coefficients mab entering the
world sheet equations are the components of the covariantly conserved ef-
fective 2-dimensional stress-energy tensor of the string. As opposed to the
point particle case, mab can not generally be eliminated by world sheet
reparametrizations. The diversity of possible forms of mab has been ana-
lyzed, and various types of matter have been found. Among others, the
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case of homogeneously distributed matter whose tension equals its mass
density gives the known Nambu-Goto string dynamics.

In closing our exposition, let us mention again that our main result can
easily be generalized to include arbitrary p-brane distribution of matter.
The corresponding world sheet equations are of the same form, but this time
a, b = 0, 1, . . . , p, and mab is the covariantly conserved (p + 1)-dimensional
energy-momentum tensor of the brane. Obviously, the diversity of possible
forms of mab is bigger than in the string case.
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