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(in collaboration with Nikola Paunković and Francisco Pipa)
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INTRODUCTION

Motivation for studying the interplay between QG and QI:

• important foundational notions in QI: entanglement, decoherence, measurement;

• important foundational notions in GR: diffeomorphism invariance, background indepen-
dence, equivalence principle;

• combining these principles in a full QG theory may lead to unexpected consequences;

• a lot of interest in QG by the QI community. . .

We review two results:

• N. Paunković and M. Vojinović,

“Gauge protected entanglement between gravity and matter”,

Class. Quant. Grav. 35, 185015 (2018), [arXiv:1702.07744].

• F. Pipa, N. Paunković and M. Vojinović,

“Entanglement-induced deviation from the geodesic motion in quantum gravity”

Jour. Cosmol. Astropart. Phys. 09, 057 (2019), [arXiv:1801.03207].



ENTANGLEMENT

Statement in brief:

• couple matter to gravity (minimal coupling, equivalence principle),

• perform the quantization of the gravity-matter system (or imagine someone else did),

• look for physical, gauge-invariant states (diff-invariance, principle of general relativity),

• for all such states, gravity and matter are entangled!

Symbolically, for H = HG ⊗HM ,

|Ψphysical〉 = c1|g1〉 ⊗ |φ1〉+ c2|g2〉 ⊗ |φ2〉+ . . .

Formally, the gauge-invariant subspace Hphys of the total Hilbert space H contains
no separable states:

(∀|Ψ〉 ∈ Hphys) |Ψ〉 6= |g〉 ⊗ |φ〉
(except maybe by accident).



ENTANGLEMENT

Setup and the classical theory:

• Start from some action for gravity and matter,

S[g, φ] = SG[g] + SM [g, φ] ,

• introduce momenta for fundamental variables g and φ,

πg ≡
δS

δ∂0g
, πφ ≡

δS

δ∂0φ
,

• perform the Dirac analysis for constrained systems to find the Hamiltonian in the form

H =

∫
Σ3

d3~x
[
NC +N iCi +NabCab

]
,

• where the constraints are the ten generators of the local Poincaré symmetry, in the form:

C = CG(g, πg) + CM(g, πg, φ, πφ) ,
Ci = CGi (g, πg) + CMi (g, πg, φ, πφ) ,
Cab = CGab(g, πg) + CMab (g, πg, φ, πφ) .



ENTANGLEMENT

Canonical quantization (Heisenberg picture):

• promote gravitational and matter fields to operators,

g → ĝ , πg → π̂g ,

φ→ φ̂ , πφ → π̂φ ,

• promote Dirac brackets to commutators,

{ · , · }D → [ · , · ] ,

• impose Gupta-Bleuler-like conditions for the state vectors:

Ĉ|Ψ〉 = 0 , Ĉi|Ψ〉 = 0 , Ĉab|Ψ〉 = 0 .

Make sure everything is well defined, unique, etc. . .



ENTANGLEMENT

Study the structure of the constraint equations:

• the matter-parts of the 3-diffeo and local Lorentz constraints have the benign form

CMi = πφ∇iφ , CMab = πφMabφ ,

• while the matter-part of the scalar constraint features the matter Lagrangian:

CM = πφ∇⊥φ−
1

N
LM(g, πg, φ, πφ) .

• Choose some nice representation,

〈g|ĝ = g〈g| , 〈g|π̂g = −i δ
δg
〈g| , 〈φ|φ̂ = φ〈φ| , 〈φ|π̂φ = −i δ

δφ
〈φ| ,

• and rewrite the scalar constraint as a functional differential equation:[
CG(g, ∂∂g) + CM(g, ∂∂g , φ,

∂
∂φ)
]

Ψ[g, φ] = 0 .



ENTANGLEMENT

Look for separable solutions:

|Ψ〉 = |ΨG〉 ⊗ |ΨM〉 ⇒ Ψ[g, φ] = ΨG[g]ΨM [φ] .

But the scalar constraint equation does not have any such solutions!!!

Namely, if the scalar constraint equation allows for the separation of variables, the
matter-part must have the form

CM(g, ∂∂g , φ,
∂
∂φ) = KG(g, ∂∂g) KM(φ, ∂

∂φ) ,

but the inspection of Lagrangians shows that it does not have the required form:

Lscalar
M =

√
−g

[
gµν(∂µϕ)(∂νϕ)−m2ϕ2 + U(ϕ)

]
,

LDirac
M =

√
−g

[
i

2
ψ̄γaeµa∇µψ −mψ̄ψ + c.c.

]
,

LYang−Mills
M =

√
−g

[
− 1

4
gµρgνσ trFµνFρσ

]
.



ENTANGLEMENT

Conclusion:

Separable states are not gauge invariant!!!

What about the other two constraints?

• the local Lorentz constraint does admit separable states as solutions,

CMab = CMab (φ, πφ) = πφMabφ ,

• the 3-diffeo constraint admits separable states for the scalar field,

CMi (ϕ, πϕ) = πϕ∂iϕ ,

but not for fields of higher spin,

CMi (ψ, πψ, e
i
µ, ω

ab
µ︸ ︷︷ ︸

g,πg

) = πψ∇iψ .

• Similarly for internal gauge symmetries such as SU(3)× SU(2)× U(1). . .



ENTANGLEMENT

Main result:

Matter and gravity are always entangled!

Consequences:

• Matter is never in a pure state — after tracing out the gravitational degrees of freedom, the
reduced density matrix for matter fields is never a pure state.

• Important for the study of decoherence — one usually starts from an initial separable state,
which becomes entangled over time. But even the initial state cannot be separable.

• Gauge-protected entanglement leads to effective “exchange interaction” due to the overlap
between states, like for the Pauli exclusion principle. This effective interaction gives rise to
deviations from geodesic trajectories for particles, introducing small violation of the weak
equivalence principle.

• Numerical calculations in toy-models suggest that the amount of entanglement is rather
small, compatible with the semiclassical picture of spacetime.



GEODESICS

Construct a point particle in field theory:

• assume the stress-energy tensor is localized along a timelike trajectory xµ = zµ(τ),

• expand it into δ-series around that trajectory,

T µν(x) =

∫
C
dτ

[
Bµν(τ)

δ(4)(x− z(τ))√
−g

+∇ρ

(
Bµνρ(τ)

δ(4)(x− z(τ))√
−g

)
+ . . .

]
,

• and approximate the series at the single-pole level:

T µν(x) =

∫
C
dτ Bµν(τ)

δ(4)(x− z(τ))√
−g

.

Then, if matter fields obey local Poincare symmetry, the covariant conservation of
stress-energy ∇νT

µν = 0 implies:

• tangent vector uµ ≡ dzµ(τ)
dτ of the trajectory satisfies the geodesic equation: uλ∇λu

µ = 0,

• structure of the stress-energy tensor has the form: Bµν(τ) = muµ(τ)uν(τ).



GEODESICS

As we have seen previously, matter and gravity have to be entangled! Therefore,
start from a toy-example state:

|Ψ〉 = α |g〉 ⊗ |φ〉︸ ︷︷ ︸
|Ψ〉

+β |g̃〉 ⊗ |φ̃〉︸ ︷︷ ︸
|Ψ̃〉

, α ∼ 1 , β � 1 .

Introduce metric and connection operators, ĝµν = ĝµν(ĝ, π̂g), Γ̂
λ
µν = Γ̂ λ

µν(ĝ, π̂g), and
choose states so that the expectation values satisfy classical EoMs in separate branches:

gµν = 〈Ψ|ĝµν|Ψ〉 , Tµν = 〈Ψ|T̂µν|Ψ〉 , Rµν(g)− 1

2
gµνR(g) = 8πl2p Tµν ,

g̃µν = 〈Ψ̃|ĝµν|Ψ̃〉 , T̃µν = 〈Ψ̃|T̂µν|Ψ̃〉 , Rµν(g̃)− 1

2
g̃µνR(g̃) = 8πl2p T̃µν .

Define |Ψ⊥〉 to rewrite the state into the form |Ψ〉 = κ|Ψ〉 + η|Ψ⊥〉, where κ ≡ α + βS,
η ≡ β

√
1− |S|2, S ≡ 〈Ψ|Ψ̃〉. Then expand for η → 0:

gµν = 〈Ψ|ĝµν|Ψ〉 = gµν + η hµν +O(η2) , hµν ≡ 2 Re
(
κ〈Ψ⊥|ĝµν|Ψ〉

)
,

Tµν = 〈Ψ|T̂µν|Ψ〉 = Tµν + η tµν +O(η2) , tµν ≡ 2 Re
(
κ〈Ψ⊥|T̂µν|Ψ〉

)
.



GEODESICS

If local Poincaré invariance is preserved at the quantum level, it gives rise to a
Gupta-Bleuler-like condition:

〈Ψ|∇̂νT̂
µν|Ψ〉 = 0 ,

Use a sequence of approximations (see the paper for details) to reduce the operator
equation to the corresponding effective classical equation,

∇νT
µν = 0 ,

where both stress-energy and the covariant derivative are expressed as expectation
values:

T µν ≡ 〈Ψ|T̂ µν|Ψ〉 , ∇ν ≡ 〈Ψ|∇̂ν|Ψ〉 .
Like stress-energy, expand the Christoffel symbol into η-series, since it is a function
of the metric:

Γ λ
µν = Γ λ

µν + ηF λ
µν +O(η2) , F µ

νσ ≡ ∇(σh
µ
ν) −

1

2
∇µhνσ ,

The result is the effective covariant conservation equation — with an η-correction
term:

∇ν (T µν + ηtµν) + 2ηF (µ
νσT

ν)σ = 0 .



GEODESICS

Now employ the effective covariant conservation to obtain the equation of motion for
the particle, like in the classical case — expand them into δ-series and approximate
at the single-pole level:

T µν(x) =

∫
C
dτBµν(τ)

δ(4)(x− z(τ))√
−g

, tµν(x) =

∫
C
dτB̄µν(τ)

δ(4)(x− z(τ))√
−g

.

The results:

• the modified geodesic equation:

∇uµ + ηuνuσF µ
⊥νσ = 0 , F µ

⊥νσ ≡ P µ
⊥λF

λ
νσ ,

• equation for the structure of effective stress-energy tensor:

Bµν + ηB̄µν = m(τ)uµuν ,

• nonrelativistic (Newtonian) limit of the equation of motion:

mI
d2zk
dτ 2

= −mI

(
1− 1

3
ηhii

)
︸ ︷︷ ︸

mG

GM

r3
zk − ηmI

[
∂0h0k −

1

2
∂kh00 −

GM

r3
zjh̃jk

]
,

where hii = 2δij Re
(
κ〈Ψ⊥|ĝij|Ψ〉

)
+O(η).



FURTHER TOPICS

• geodesic deviation equation

• analysis of the weak and strong equivalence principles

• equation of motion at η2 order

• more “serious” superpositions of gravity — multiple causal orders, closed timelike curves,
. . .

• operational approach to measuring the spacetime manifold

• etc. . .
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