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INTRODUCTION

The main statement in brief:

Lie algebra ←→ Lie group

Ln algebra ←→ Lie n-group

L∞ algebra ←→ Lie ∞-group

For physics, the interesting cases are n = 1, 2, 3, 4, 6,∞.



HIGHER CATEGORY THEORY

A flash introduction to the category theory “ladder”:

• a 0-category C0 = Obj is just a set. The elements of the set are called objects.

• a 1-category C1 = (Obj,Mor) is a structure which has objects and morphisms

between them,

X, Y, Z, · · · ∈ Obj , f, g, h, · · · ∈Mor ,

Y X Z

f

h

g

such that certain rules are respected, like the associativity of morphism composi-

tion, etc.

The most famous example is the category whose objects are dots on the paper,

and morphisms are arrows connecting the dots:

• • •



HIGHER CATEGORY THEORY

• a 2-category C2 = (Obj,Mor1,Mor2) is a structure which has objects, morphisms

between them, and morphisms between morphisms, called 2-morphisms,

X, Y, Z, · · · ∈ Obj , f, g, h, · · · ∈Mor1 , α, β, · · · ∈Mor2 ,

Y X Z

f

h

α
g

such that similar rules as above are respected.

• a 3-category C3 = (Obj,Mor1,Mor2,Mor3) additionally has morphisms between

2-morphisms, called 3-morphisms, again with a certain set of axioms about com-

positions.
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n-GROUPS AND CROSSED MODULES

The algebraic structure of a group is a special case of a category:

• a group is a category with only one object, while all morphisms are invertible,

• a 2-group is a 2-category with only one object, while all 1-morphisms and 2-

morphisms are invertible,

• a 3-group is a 3-category with only one object, while all 1-morphisms, 2-morphisms

and 3-morphisms are invertible,

• and similarly for a general n-group (n ∈ N and n =∞).

• • •
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n-GROUPS AND CROSSED MODULES

A more practical way to talk about a 2-group — a crossed module:

( H
∂→ G , . )

• G and H are ordinary groups,

• ∂ is called a “boundary” homomorphism, ∂ : H → G,

• . is called an ”action” of G onto both groups G and H ,

. : G×G→ G , . : G×H → H ,

• and certain axioms are assumed to hold,

conjugation: g . g′ = gg′g−1 ,

∂- . relation: ∂(g . h) = g . ∂h ,

Peiffer identity: ∂h . h′ = hh′h−1 ,

for all g, g′ ∈ G and h, h′ ∈ H .



n-GROUPS AND CROSSED MODULES

A more practical way to talk about a 3-group — a 2-crossed module:

( L
δ→ H

∂→ G , . , { , } )

• G, H and L are ordinary groups,

• there are two boundary homomorphisms, δ and ∂,

δ : L→ H , ∂ : H → G ,

• there is a defined action . of G onto all three groups G, H and L,

. : G×G→ G , . : G×H → H , . : G× L→ L ,

• there is a bracket operation called Peiffer lifting over H to L,

{ , } : H ×H → L ,

• and certain axioms are assumed to hold among all these maps.



n-GROUPS AND CROSSED MODULES

The axioms of a 2-crossed module L
δ→ H

∂→ G:

chain complex: ∂δl = 1G ,

conjugation: g . g′ = gg′g−1 ,

∂- . relation: ∂(g . h) = g . ∂h ,

δ- . relation: δ(g . l) = g . δl ,

Peiffer commutator: δ {h, h′} = hh′h−1(∂h . h′)−1 ,

G-equivariance of lifting: g . {h, h′} = {g . h, g . h′} ,
commutator in L: {δl, δl′} = l l′ l−1 l′−1 ,

δ-lifting relation: l(∂h . l)−1 = {δl, h} {h, δl} ,
left product: {hh′, h̃} = {h, h′h̃h′−1} ∂h . {h′, h̃} ,
right product: {h, h′h̃} = {h, h′} {h, h̃} {(∂h . h′)hh′−1h−1, ∂h . h′} ,

for all g ∈ G, h ∈ H and l ∈ L. . .



DIFFERENTIAL CROSSED MODULES

Why focus attention on Lie n-groups?

• In addition to being groups, Lie groups are also manifolds:

algebra ←→ geometry

• Being a manifold, a Lie group has a tangent space. Being a group, a Lie group

induces a product between tangent vectors — a Lie algebra.

• Moreover, given a Lie algebra, one can reconstruct a Lie group (though not

uniquely), providing a correspondence between Lie algebras and Lie groups.

• Can a similar correspondence be obtained more generally, for Lie n-groups? Yes!

Lie n-group ⇐⇒ Lie (n− 1)-crossed module

l
Ln algebra ⇐⇒ differential (n− 1)-crossed module



DIFFERENTIAL CROSSED MODULES

Given a Lie crossed module ( H
∂→ G , . ), one can introduce a differ-

ential crossed module:

( h
∂→ g , . )

• g and h are Lie algebras of Lie groups G and H ,

• boundary homomorphism ∂ and the action . are induced:

∂ : h→ g , . : g× g→ g , . : g× h→ h ,

• and the corresponding linearized axioms hold:

adjoint action: g . g′ = [g, g′] ,

∂- . relation: ∂(g . h) = g . ∂h ,

Peiffer identity: ∂h . h′ = [h, h′] ,

for all g, g′ ∈ g and h, h′ ∈ h.



DIFFERENTIAL CROSSED MODULES

Similarly, given a Lie 2-crossed module ( L
δ→ H

∂→ G , . , { , } ), one

can introduce a differential 2-crossed module:

( l
δ→ h

∂→ g , . , { , } )

• where g, h, l are Lie algebras of G, H , L,

• all maps δ, ∂, . and { , } are inherited from the 3-group by linearization,

δ : l→ h , ∂ : h→ g ,

. : g× g→ g , . : g× h→ h , . : g× l→ l ,

{ , } : h× h→ l ,

• corresponding linearized axioms apply.



L∞ AND Ln ALGEBRAS

Let us now recall the definition of the Ln algebra. It consists of:

• an n-graded vector space,

V =

n−1⊕
k=0

Vk ,

• a set of multilinear brackets lk( , . . . , ) of k arguments, for every k ∈ N,

lk : V ⊗ · · · ⊗ V︸ ︷︷ ︸
k terms

→ V ,

• which are totally graded-antisymmetric,

lk(. . . , v, v
′, . . . ) = −(−1)|v||v

′|lk(. . . , v
′, v, . . . ) ,

• and satisfy homotopy relations

Jk({v}) ≡
k∑
i=1

(−1)i(k−i)
∑
σ

χ(σ, {v}) lk+1−i(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(k)) = 0 .



ISOMORPHISM

Finally, we are ready to establish an isomorphism — given a differential

Lie crossed module ( h
∂→ g , . ), define the L2 algebra as follows:

• since Lie algebras g and h are vector spaces, define the graded vector space as

V0 = g , V1 = h , V ≡ V0 ⊕ V1 = g⊕ h ,

• for all g ∈ g and h ∈ h, introduce the unary bracket l1( ) as

l1(g) = 0 , l1(h) = ∂h ,

• similarly introduce the binary bracket l2( , ) as

l2(g, g′) = g . g′ , l2(g, h) = g . h , l2(h, h′) = 0 ,

• for k > 3, define all remaining brackets as

lk( , . . . , ) = 0 .



ISOMORPHISM

Given these definitions, all axioms of the differential crossed module

are equivalent to the nontrivial parts of the graded antisymmetry and

homotopy relations for the L2 algebra.

For example, the homotopy relation J2(v, v′) = 0 states

l1(l2(v, v′)) = l2(l1(v), v′) + (−1)|v||v
′|l2(v, l1(v′)) .

Evaluating this relation for v = g, v′ = h, we have |g| = 0, |h| = 1, and using the

definitions of brackets l1( ) and l2( , ), one obtains

∂(g . h) = 0 + g . ∂h .

This is nothing but the axiom called ∂-. relation of the differential crossed module.

In a similar manner, using the homotopy relations, one can recover all axioms of the

differential crossed module. Conversely, starting from the axioms of the differential

crossed module and the previous definition of L2 algebra, one can prove that all ho-

motopy relations hold.



ISOMORPHISM

In a similar fashion, one can establish another isomorphism — given

a differential Lie 2-crossed module ( l
δ→ h

∂→ g , . , { , } ), define the

L3 algebra as follows:

• since Lie algebras g, h and l are vector spaces, define the graded vector space as

V0 = g , V1 = h , V2 = l , V ≡ V0 ⊕ V1 ⊕ V2 = g⊕ h⊕ l ,

• for all g ∈ g, h ∈ h, and l ∈ l introduce the unary bracket l1( ) as

l1(g) = 0 , l1(h) = ∂h , l1(l) = δl ,

• introduce the binary bracket l2( , ) as

l2(g, g′) = g . g′ , l2(g, h) = g . h , l2(g, l) = g . l ,

l2(h, h′) = −{h, h′}−{h′, h} , l2(h, l) = −{δl, h} , l2(l, l′) = 0,

• for k > 3, define all remaining brackets as lk( , . . . , ) = 0.



ISOMORPHISM

Again, given these definitions, one can demonstrate the equivalence

between all axioms of the differential 2-crossed module and the homo-

topy relations for the L3 algebra.

As a simplest example, the homotopy relation J1(v) = 0 states that

l1(l1(v)) = 0 .

Evaluating this relation for v = l and using the definitions of the bracket l1( ) one

obtains

∂δl = 0 ,

which is the chain complex axiom of the differential 2-crossed module.

These two examples illustrate the stated relationship between Lie

n-groups and Ln algebras.



PHYSICS AND HIGHER GAUGE THEORY

The main purpose of all these higher structures is to generalize the

notion of parallel transport from curves to surfaces to volumes etc.:

• The differential Lie 2-crossed module ( l
δ→ h

∂→ g , . , { , } ) enables one to

define a 3-connection (α, β, γ) as a triple of 3-algebra-valued differential forms,

α = ααµ(x) τα dxµ ∈ Λ1(M, g) ,

β = 1
2β

a
µν(x) ta dxµ ∧ dxν ∈ Λ2(M, h) ,

γ = 1
3!γ

A
µνρ(x)TA dxµ ∧ dxν ∧ dxρ ∈ Λ3(M, l) .

• Then introduce the line, surface and volume holonomies,

g = Pexp

∫
P1
α , h = Sexp

∫
S2
β , l = Vexp

∫
V3
γ ,

• and corresponding curvature forms,

F = dα + α ∧ α− ∂β ,
G = dβ + α ∧. β − δγ ,
H = dγ + α ∧. γ − {β ∧ β} .



PHYSICS AND HIGHER GAUGE THEORY

At this point one can construct the so-called 3BF theory, with the

action:

S3BF =

∫
M
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l .

Here 〈 , 〉g, 〈 , 〉h, and 〈 , 〉l represent the g-invariant nondegenerate symmetric

bilinear forms over the Lie algebras g, h, and l. In terms of the L3 algebra, these are

components of the single such form defined over the graded vector space V = g⊕h⊕ l,

〈 , 〉 : V ⊗ V → R .

The 3BF action is an example of a topological higher gauge theory,

whose symmetry is described by the corresponding 3-group.

Non-topological actions (which are more interesting for physics) can be obtained from

the 3BF action by adding appropriate simplicity constraint terms into the action,

which impose appropriate equations of motion. There also exists a generalization to

4BF action, based on a 4-group structure, which has some additional benefits.



PHYSICS AND HIGHER GAUGE THEORY

Physical interpretation:

• all gauge fields are described by the g-valued 1-form part of the 3-connection,

α = ααµ(x) τα dxµ ∈ Λ1(M, g) ,

which includes all internal gauge fields, as well as the Lorentz spin connection;

• the h-valued Lagrange multiplier 1-form C can be interpreted as the tetrad field,

C → e = eaµ(x) ta dxµ ∈ Λ1(M, h) ,

which (together with the spin connection) describes the gravitational field;

• the l-valued Lagrange multiplier 0-form D can be interpreted as the set of matter

fields:

D → φ = φA(x)TA ∈ Λ0(M, l) ,

which include all fermions and scalar fields;

• in the 4BF theory, based on a 4-group, fermions and scalar fields are further

separated into two different Lagrange multipliers.



REFERENCES

• For a general introduction to higher category theory and higher gauge theory, one

can start here:

J. C. Baez and J. Huerta, arXiv:1003.4485.

• As a starting point for the topic of 2-groups and crossed modules, and the intro-

duction of 2BF theory, see:

F. Girelli, H. Pfeiffer and E. M. Popescu, arXiv:0708.3051,

J. Faria Martins and A. Miković, arXiv:1006.0903.
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