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TOPICS

• Influence of curvature and torsion on the motion

of bodies

• Properties of spinfoam models of Loop Quantum

Gravity

• Constructions of QG models based on higher gauge

theories

• Quantum information theoretical approach to

quantum gravity



MOTION OF BODIES

Collaboration with Prof. M. Vasilić, 7 papers, 2004–2010:

[1] Classical string in curved backgrounds

M. Vasilić and M. Vojinović, Phys. Rev. D 73, 124013 (2006).

[2] Classical spinning branes in curved backgrounds

M. Vasilić and M. Vojinović, JHEP 07, 028 (2007).

[3] Single-pole interaction of the particle with the string

M. Vasilić and M. Vojinović, SIGMA 4, 019 (2008).

[4] Interaction of particle with the string in pole-dipole approximation

M. Vasilić and M. Vojinović, Fortschr. Phys. 56, 542 (2008).

[5] Zero-size objects in Riemann-Cartan spacetime

M. Vasilić and M. Vojinović, JHEP 08, 104 (2008).

[6] Spinning branes in Riemann-Cartan spacetime

M. Vasilić and M. Vojinović, Phys. Rev. D 78, 104002 (2008).

[7] Test membranes in Riemann-Cartan spacetimes

M. Vasilić and M. Vojinović, Phys. Rev. D 81, 024025 (2010).



MOTION OF BODIES

Main problem: what are the effective classical equations of motion

for a “body”, made of some matter, moving freely in spacetime with

nonzero curvature and torsion?

• Describe a “body” as a spatially localized configuration of matter fields, a kink.

• Impose local Poincaré invariance of the matter fields that make up the kink.

• In spacetime with curvature and torsion, second Noether theorem gives rise to

covariant conservation of stress-energy and spin tensors.

• Impose covariant conservation laws to deduce:

– equations of motion for the kink,

– structure equations for the stress-energy and spin tensors.

Key insight: in the context of general relativity, the equations of mo-

tion for the kink are derived as a consequence of Einstein equations

(and similarly in Einstein-Cartan gravity).



MOTION OF BODIES

The new math result, underpinning the work — Dirac δ series:

• Given a function f (x) which is “well localized” around a peak x0, one can expand

it into a series of derivatives of Dirac δ function, around the point z, as

f (x) = b0δ(x− z) + b1δ
′(x− z) + b2δ

′′(x− z) + · · · =
∞∑
n=0

bn
dn

dxn
δ(x− z) .

• The coefficients bn are given by the inverse transformation, and are known as n-th

moments of f :

bn =
(−1)n

n!

∫
R
dx (x− z)nf (x) .

• Crucial property: iff z ≈ x0, we have b0 � b1 � b2 � b3 � . . .

• The δ series can be generalized to describe a p-dimensional kink in D-dimensional

ambient spacetime:

f (x) =

∫
Σ

dp+1ξ
√
−γ

∞∑
n=0

∇µ1 . . .∇µn

[
Bµ1...µn(ξ)

δ(D)(x− z(ξ))√
−g

]
.



MOTION OF BODIES

The δ series can be applied to describe the stress-energy and spin

tensors of the p-dimensional kink:

τµν(x) =

∫
Σ

dp+1ξ
√
−γ

∞∑
n=0

∇ρ1 . . .∇ρn

[
Bµνρ1...ρn(ξ)

δ(D)(x− z(ξ))√
−g

]
,

σλµν(x) =

∫
Σ

dp+1ξ
√
−γ

∞∑
n=0

∇ρ1 . . .∇ρn

[
Cλµνρ1...ρn(ξ)

δ(D)(x− z(ξ))√
−g

]
.

• To derive equations of motion, one cuts the series after a finite number of terms in

the series (multipole approximation), which places a restriction on the expansion

hypersurface Σ to coincide with the “localization peak” of matter fields.

• Then enforce the covariant conservation equations from second Noether theorem:

(∇ν + T λνλ)τ νµ = τ νρT ρµν +
1

2
σνρσRρσµν ,

(∇ν + T λνλ)σνρσ = τρσ − τσρ .



MOTION OF BODIES

The result:

• Restriction on the expansion hypersurface Σ, coupled with covariant conservation

equations, transforms into a differential equation for z(ξ), i.e., an equation of

motion of the kink. In the pole-dipole approximation:

∇b

[
mabuµa − 2ubλ(∇aJ

µλa + Dµλ) + uµcu
c
ρu

b
λ(∇aJ

ρλa + Dρλ)
]

=

= uνaJ
λρaRµ

νλρ +
1

2
Cνρλ∇µKρλν .

• Additionally, we obtain an equation of motion for the angular momentum field of

the kink,

P⊥
µ
λP⊥

ν
ρ(∇aJ

λρa + Dλρ) = 0 ,

• the structure equations for the multipole moments in terms of the free parameters,

Bµν = mabuµau
ν
b +∇aN

µνa + 2uaλu
(µ
a P⊥

ν)
ρ ∇aJ

λρa , Bµνρ = 2u(µ
a J

ν)ρa +Nµνauρa ,

• and appropriate boundary conditions at the boundary hypersurface ∂Σ, if it exists.



MOTION OF BODIES

Further results and applications:

• Special cases of equations of motion — geodesic equation for a test particle,

Nambu-Goto equation for a string, Papapetrou equations for a particle with spin,

and many more general situations. . .

• Various gauge symmetries of the equations of motion have been studied — space-

time diffeomorphisms, diffeomorphisms of worldsheet hypersurface Σ, and also two

additional symmetries corresponding to the level of multipole approximation, and

to the choice of the central surface of mass of the kink.

• Applications of the formalism include the study of the Kalb-Ramond field in the

string theory effective action, etc.

• The formalism has also been applied in quantum gravity, to study the violation of

the weak equivalence principle for a particle in superposed gravitational fields.

• The formalism has been extended (by other researchers) to include electric charge

density and the motion in an external electromagnetic field, and further to the

Yang-Mills case, etc. . .



PROPERTIES OF SPINFOAM MODELS

Collaboration with Prof. A. Miković, 6 papers, 2009–2016:

[8] Large-spin asymptotics of Euclidean LQG flat-space wavefunctions

A. Miković and M. Vojinović, Adv. Theor. Math. Phys. 15, 801 (2011).

[9] Effective action and semiclassical limit of spin foam models

A. Miković and M. Vojinović, Class. Quant. Grav. 28, 225004 (2011).

[10] A finiteness bound for the EPRL/FK spin foam model

A. Miković and M. Vojinović, Class. Quant. Grav. 30, 035001 (2013).

[11] Cosine problem in EPRL/FK spin foam model

M. Vojinović, Gen. Relativ. Gravit. 46, 1616 (2014).

[12] Solution to the cosmological constant problem in a Regge quantum gravity model

A. Miković and M. Vojinović, Europhys. Lett. 110, 40008 (2015).

[13] Causal dynamical triangulations in the spincube model of quantum gravity

M. Vojinović, Phys. Rev. D 94, 024058 (2016).



PROPERTIES OF SPINFOAM MODELS

Main problems:

• How to ensure the UV and IR finiteness of a spinfoam model?

• Does a spinfoam model have a correct semiclassical limit?

• How to compute IR observables in quantum gravity? Are there any interesting

ones?

Additional problems:

• What is the relationship between spinfoam models and other comparable ap-

proaches to quantum gravity, such as causal dynamical triangulations and causal

set theory?

Key insight: all previously constructed spinfoam models had some

unneccesary restrictions imposed on them. Relaxing those restrictions

leads to more general models, which feature simple solutions to above

problems.



PROPERTIES OF SPINFOAM MODELS

The new math result, underpinning the work — nonperturbative eff-

ective action equation:

• In ordinary QFT, within the path integral formalism, one can prove the following

nonperturbative result:

exp (iΓ [φ]) =

∫
Dϕ exp

[
iS[φ + ϕ]− i

∫
d4xϕ(x)

δΓ [φ]

δφ(x)

]
,

where S[φ] is the classical action, Γ [φ] is the effective action (with all quantum

corrections taken into account).

• The idea of an effective action is based on the background field method. Here φ

is the background field, in arbitrary configuration. The effective action equation

is nontrivial for off-shell background fields, since then δΓ [φ]
δφ(x) 6= 0.

The effective action equation is straightforward to generalize from

smooth to piecewise-linear configurations, and further to spinfoam

models, and beyond to other models of quantum gravity.



PROPERTIES OF SPINFOAM MODELS

Generic state sum model represents a Feynman-discretized definition

of the path integral. In 4 dimensions, we have:

Z ≡
∫
Dϕ eiS[ϕ] =

∑
ϕ

∏
v

Av(ϕ)
∏
ε

Aε(ϕ)
∏
4

A4(ϕ)
∏
τ

Aτ (ϕ)
∏
σ

Aσ(ϕ) .

• The fields φ are labels associated to the elements of a triangulation of 4D spacetime

— vertices v, edges ε, triangles 4, tetrahedra τ and 4-simplices σ. In general,

each subsimplex in the triangulation has its amplitude function A(φ), which can

be chosen freely.

• Given a state sum Z, one can define the effective action equation by substituting:

Z → exp(iΓ [φ]) , A∗(ϕ)→ A∗(φ + ϕ) , ∗ ∈ {v, ε,4, τ} ,

Aσ(ϕ)→ Aσ(φ + ϕ) exp

(
−iϕσ

δΓ [φ]

δφσ

)
.

One can employ the effective action equation to all spinfoam models

and efficiently study their properties and all of the above problems.



PROPERTIES OF SPINFOAM MODELS

Results:

• A spinfoam model can have a correct semiclassical limit by suitable choice of the

amplitudes A(φ) and evaluating the effective action in the large-distance limit.

• The state sum Z can be IR finite by a suitable choice of the “measure terms”

(amplitudes A(φ) for subleading simplices). Also, it is UV finite by construction.

• In the evaluation of the effective action, one can extract terms of the form∏
σ

exp
(
iΛ(4)Vσ(l)

)
= exp

(
iΛ
∑
σ

(4)Vσ(l)

)
≈ exp

(
iΛ

∫
d4x
√
−g
)
,

giving rise to the evaluation of the cosmological constant term:

Γ [l, φ] ∝
∫
d4x
√
−g Λ .

It turns out that this procedure can give a nonperturbative result 0 < Λl2p � 1,

which fits well with the experimental result Λl2p ≈ 10−122.



HIGHER GAUGE THEORIES

Collaboration with Prof. A. Miković and students M. A. Oliveira, T.

Radenković, P. Stipsić and M. -Dord̄ević, 6 papers, 2011–now:

[14] Poincaré 2-group and quantum gravity

A. Miković and M. Vojinović, Class. Quant. Grav. 29, 165003 (2012).

[15] Hamiltonian analysis of the BFCG theory for the Poincaré 2-group

A. Miković, M. A. Oliveira and M. Vojinović, Class. Quant. Grav. 33, 065007 (2016).

[16] Hamiltonian analysis of the BFCG formulation of general relativity

A. Miković, M. A. Oliveira and M. Vojinović, Class. Quant. Grav. 36, 015005 (2019).

[17] Higher gauge theories based on 3-groups

T. Radenković and M. Vojinović, JHEP 10, 222 (2019).

[18] Hamiltonian Analysis for the Scalar Electrodynamics as 3BF Theory

T. Radenković and M. Vojinović, Symmetry 12, 620 (2020).

[19] Standard Model and 4-groups

A. Miković and M. Vojinović, Europhys. Lett. 133, 61001 (2021).



HIGHER GAUGE THEORIES

Main problem: how to couple matter fields to gravity in spinfoam

models?

• The starting point for the construction of all spinfoam models is the BF theory,

based on the Lorentz group, SO(3, 1).

• As a consequence, gravity is described by the spin-connection ωabµ(x), while

tetrads eaµ(x) appear exclusively on-shell.

• Thus, since some matter fields couple directly to tetrads, it is impossible to include

them off-shell (as new fields in the path integral).

Key insight: higher gauge theory generalizes BF action to the BFCG

action, where the C term behaves precisely like the tetrad, C ≡ e!

Therefore, 2BF theory contains tetrads off-shell, and in this way faci-

litates the coupling of matter fields.



HIGHER GAUGE THEORIES

The new math result, underpinning the work — categorical ladder and

n-groups:

• An n-group (n = 1, 2, 3, 4) is a category with a single object, and all k-morphisms

invertible.

• n-groups are equivalent to (n − 1)-crossed modules, whose differential versions

play the role of a “Lie algebra” structure. For example, a 2-group is isomorphic

to a crossed module, (H
∂→ G , .), while a 3-group is isomorphic to a 2-crossed

module, (L
δ→ H

∂→ G , . , { , }).

• n-groups give rise to generalized parallel transport, holonomy, and connection:

α = ααµ(x) τα dxµ ∈ Λ1(M, g) ,

β = 1
2β

a
µν(x) ta dxµ ∧ dxν ∈ Λ2(M, h) ,

γ = 1
3!γ

A
µνρ(x)TA dxµ ∧ dxν ∧ dxρ ∈ Λ3(M, l) .

n-groups can be used to describe gauge symmetry, giving rise to topo-

logical nBF actions, used in construction of QG models.



HIGHER GAUGE THEORIES

In the 3-group case, (L
δ→ H

∂→ G , . , { , }), the corresponding 3BF

action is:

S3BF =

∫
M
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l .

• F , G, H are curvatures for the 3-connection forms α, β, γ, while B, C, D are

Lagrange multipliers.

• Gauge fields are described by the connection 1-form α. A typical choice of the

group G could be G = SO(3, 1)× SU(3)× SU(2)× U(1).

• The tetrad fields are described by the Lagrange multiplier 1-form C → e. This is

typically achieved by choosing the group H to be spacetime translations, H = R4.

• The scalar and fermion fields are described by the Lagrange multiplier 0-form

D → φ, ψ, ψ̄. They are classified by a suitable choice of the group L.

The 3-group and 4-group structures provide an algebraic classification

of all fields in nature: gauge, gravitational, and matter fields — in

constrast to the Standard Model!



HIGHER GAUGE THEORIES

Results and future work:

• The constrained 3BF and 4BF actions have been constructed, describing the com-

plete Standard Model of elementary particles, coupled to Einstein-Cartan gravity.

• Hamiltonian analysis has been performed for 2BF and 3BF actions, and all gauge

symmetries have been studied.

• A topological invariant corresponding to 3BF action is under construction.

• Study of symmetry breaking mechanisms and higher gauge Noether theorems is

in progress.

• Study of the n-group analogue of the Coleman-Mandula theorem is in progress.

• Construction of the full state sum model for quantum gravity with matter is in

progress.

A promising research direction for grand unification and a “theory of

everything”.



QUANTUM INFORMATION QG

Collaboration with Dr. N. Paunković and students F. Pipa, R. Faleiro,

V. Manojlović and J. Janjić, 3 papers, 2015–now:

[20] Gauge protected entanglement between gravity and matter

N. Paunković and M. Vojinović, Class. Quant. Grav. 35, 185015 (2018).

[21] Entanglement-induced deviation from the geodesic motion in quantum gravity

F. Pipa, N. Paunković and M. Vojinović, Jour. Cosmol. Astropart. Phys. 09, 057 (2019).

[22] Causal orders, quantum circuits and spacetime: distinguishing between definite and super-
posed causal orders

N. Paunković and M. Vojinović, Quantum 4, 275 (2020).



QUANTUM INFORMATION QG

Main problem: what are the nontrivial applications of superposition

principle and measurement postulate to gravity, and what are their

consequences?

• Study curious conceptual situations — putting a gravitational field in the Schrö-

dinger cat state, shooting a black hole through a beam splitter, detecting super-

positions of different causal orders of events, etc. . .

• Also some foundational questions — operational description of spacetime emer-

gence, entanglement with vacuum, quantum violation of weak equivalence princi-

ple. . .

• There is a sizable community of experts on quantum information theory, who

are attacking the problem of quantum gravity using the techniques of quantum

information and similar.

Key insight: the quantum information people lack expertise in field

theory — an excellent situation for opportunistic joint research! :-)



QUANTUM INFORMATION QG

The new/old math result, underpinning the work — QM is 1-dimen-

sional QFT:

• QFT is typically (3+1)-dimensional, formulated in the Heisenberg (or interaction)

picture. When QM is rephrased in Heisenberg picture, it becomes equivalent to a

(0 + 1)-dimensional QFT.

• This correspondence can be exploited to “upgrade” various typical QM notions to

QFT and further to QG.

• It can also be exploited to “downgrade” various typical QFT notions to QM.

• A (0 + 1)-dimensional spacetime has no curvature (nor torsion), and therefore no

gravity. It also features no spatial boundary conditions. A (3 + 1)-dimensional

spacetime features both gravity and nontrivial boundary.



QUANTUM INFORMATION QG

Results and future work:

• Gravity and matter are coupled so that diffeomorphism-invariant states are never

product states between gravity and matter, but essentially always entangled.

• A test particle travelling through spacetime which features a superposition of two

different gravitational fields will experience a force pushing it off a geodesic tra-

jectory of either gravitational field, thus violating the weak equivalence principle.

• Superposition of different orders of operations can be distinguished from the su-

perposition of different causal orders in spacetime, with an explicit observable.

• Closed timelike curves can be constructed using a superposition of two globally

hyperbolic spacetimes, with no need for exotic matter (in preparation).

• There is an operational protocol which can detect the existence of a spacetime

manifold, and measure its dimension and topology. This (almost) establishes

spacetime as an ontological reality (in preparation).
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