# Violation of the weak equivalence principle due to gravity-matter entanglement 

Nikola Paunković ${ }^{1,2}$, Francisco Pipa $^{3}$ and Marko Vojinović ${ }^{4}$<br>${ }^{1}$ Department of Mathematics, IST, University of Lisbon<br>${ }^{2}$ Security and Quantum Information Group (SQIG), Institute of Telecommunications, Lisbon<br>${ }^{3}$ Department of Physics, IST, University of Lisbon<br>${ }^{4}$ Group for Gravitation, Particles and Fields (GPF), Institute of Physics, University of Belgrade

instituto de
telecomunicaçōes


## Weak Equivalence Principle

The local effects of particle motion in a gravitational field are indistinguishable from those of an accelerated observer in flat spacetime.

## Consequence:

A particle in a gravitational field should follow the geodesic, since this is how the straight line in flat space looks like from the accelerated frame.

## Deriving WEP (geodesic motion) in GR

Single-pole approximation:

$$
\begin{equation*}
T^{\mu \nu}(x)=\int_{\mathcal{C}} d \tau B^{\mu \nu}(\tau) \frac{\delta^{(4)}(x-z(\tau))}{\sqrt{-g}} \tag{1}
\end{equation*}
$$

Conservation of stress-energy tensor (assuming the local Poincaré invariance for both $S_{G}[g]$ and $\left.S_{M}[g, \phi]\right)$ :

$$
\begin{equation*}
\nabla_{\nu} T^{\mu \nu}=0 \tag{2}
\end{equation*}
$$

Replacing (2) into (1), we obtain the geodesic equation, with $u^{\mu} \equiv \frac{d z^{\mu}(\tau)}{d \tau}$ and $u^{\mu} u_{\mu} \equiv-1$ (Mathisson and Papapetrou [2, 3]; see also [4]):

$$
u^{\lambda} \nabla_{\lambda} u^{\mu}=0
$$

Using Cristoffel symbols,

$$
\frac{d^{2} z^{\lambda}(\tau)}{d \tau^{2}}+\Gamma_{\mu \nu}^{\lambda} \frac{d z^{\mu}(\tau)}{d \tau} \frac{d z^{\nu}(\tau)}{d \tau}=0
$$

## Quantising gravity

Fundamental gravitational degrees of freedom $\hat{g}$ and $\hat{\pi}_{g}$ :

$$
\Delta \hat{g} \Delta \hat{\pi}_{g} \geq \frac{\hbar}{2}, \quad \Delta \hat{\phi} \Delta \hat{\pi}_{\phi} \geq \frac{\hbar}{2}
$$

Separable state ( $|g\rangle$ and $|\phi\rangle$ - coherent states of gravity and matter):

$$
|\Psi\rangle=|g\rangle \otimes|\phi\rangle
$$

Effective classical metric and stress-energy tensors:

$$
g_{\mu \nu} \equiv\langle\Psi| \hat{g}_{\mu \nu}|\Psi\rangle, \quad T_{\mu \nu} \equiv\langle\Psi| \hat{T}_{\mu \nu}|\Psi\rangle
$$

## Violation of WEP due to entanglement

Entangled state (perturbation $|\tilde{\Psi}\rangle=|\tilde{g}\rangle \otimes|\tilde{\phi}\rangle$, with coherent classical states $|\tilde{g}\rangle$ and $|\tilde{\phi}\rangle$ ):

$$
|\Psi\rangle=\alpha|\Psi\rangle+\beta|\tilde{\Psi}\rangle
$$

"Entangled" metric:

$$
\boldsymbol{g}_{\mu \nu}=\langle\boldsymbol{\Psi}| \hat{g}_{\mu \nu}|\Psi\rangle=g_{\mu \nu}+\beta h_{\mu \nu}+\mathcal{O}\left(\beta^{2}\right)
$$

The perturbation is evaluated to be:

$$
h_{\mu \nu}=2 \operatorname{Re}\left[\langle\Psi| \hat{g}_{\mu \nu}|\tilde{\Psi}\rangle-\langle\Psi \mid \tilde{\Psi}\rangle g_{\mu \nu}\right] .
$$

"Entangled" geodesic equation with the manifestly covariant correction:

$$
\begin{gathered}
\frac{d^{2} z^{\mu}(\tau)}{d \tau^{2}}+\Gamma^{\mu}{ }_{\rho \nu} \frac{d z^{\rho}(\tau)}{d \tau} \frac{d z^{\nu}(\tau)}{d \tau}=0 \\
u^{\lambda} \nabla_{\lambda} u^{\mu}+\beta\left(\nabla_{\rho} h_{\nu}^{\mu}-\frac{1}{2} \nabla^{\mu} h_{\nu \rho}\right) u^{\rho} u^{\nu}+\mathcal{O}\left(\beta^{2}\right)=0 .
\end{gathered}
$$

## Bibliography

[1] N. Paunković and M. Vojinović, (2017), arXiv:1702.07744
[2] M. Mathisson, Acta Phys. Polon. 6, 163 (1937)
[3] A. Papapetrou, Proc. R. Soc. A 209, 248 (1951)
[4] M. Vasilić and M. Vojinović, JHEP , 0707, 028 (2007), arXiv:0707.3395

THANK YOU!

