Symmetry protected entanglement between gravity and matter

Nikola Paunković^{1,2} and Marko Vojinović³

¹ Department of Mathematics, IST, University of Lisbon

² Security and Quantum Information Group (SQIG), Institute of Telecommunications, Lisbon

³ Group for Gravitation, Particles and Fields (GPF), Institute of Physics, University of Belgrade

NP acknowledges the financial support of the IT Research Unit, ref. UID/EEA/50008/2013 and the IT project QbigD funded by FCT PEst-OE/EEI/LA0008/2013

Local Poincaré symmetry in classical GR

Formalization of the principle of general relativity amounts to the statement that GR should be invariant with respect to local Poincaré transformations.

As a consequence, GR is a theory with constraints, in particular:

- the scalar constraint \mathcal{C} ,
- 3-diffeomorphism constraints C_i , and
- local Lorentz constraints C_{ab} .

The Hamiltonian then takes the general form [1]:

$$H = \int_{\Sigma_3} d^3 \vec{x} [N\mathcal{C} + N^i \mathcal{C}_i + N^{ab} \mathcal{C}_{ab}]$$

Scalar constraint in the canonical quantisation — nonseparability

The Dirac's quantisation programme of constrained systems [2] — local Poincaré gauge invariance conditions (Gupta-Bleuler [3, 4]):

$$\hat{\mathcal{C}}|\Psi\rangle = 0, \qquad \hat{\mathcal{C}}_i|\Psi\rangle = 0, \qquad \hat{\mathcal{C}}_{ab}|\Psi\rangle = 0.$$

The physical gauge-invariant Hilbert space is a proper subset of the total Hilbert space:

$$\mathcal{H}_{\mathrm{phys}} \subset \mathcal{H}_G \otimes \mathcal{H}_M$$
.

The scalar constraint:

$$\hat{\mathcal{C}} = \mathcal{C}_G(\hat{g}, \hat{\pi}_g) + \hat{\pi}_{\phi} \hat{\nabla}_{\!\!\perp} \hat{\phi} - \frac{1}{N} \mathcal{L}_M(\hat{g}, \hat{\pi}_g, \hat{\phi}, \hat{\pi}_{\phi}) \,.$$

The matter Lagrangian \mathcal{L}_M is nonseparable (for the scalar, spinor and vector fields), thus generically:

$$|\Psi_G\rangle\otimes|\Psi_M\rangle\notin\mathcal{H}_{\mathrm{phys}}$$
.

Hartle-Hawking state in the covariant quantisation — entanglement

Feynman's quantisation programme — the path integral of a gravitymatter quantum system:

$$Z = \int \mathcal{D}g \int \mathcal{D}\phi \ e^{iS[g,\phi]} \,.$$

Hartle-Hawking state [5] and the spacetime triangulation:

$$\Psi_{\mathrm{HH}}[g,\phi] = \mathcal{N} \int \mathcal{D}G \int \mathcal{D}\Phi \; e^{iS[g,\phi,G,\Phi]} \,.$$

The density matrix of a partial matter state:

$$\hat{\rho}_M = \operatorname{Tr}_G |\Psi\rangle \otimes \langle \Psi| = \int \mathcal{D}\phi \int \mathcal{D}\phi' \left[\int \mathcal{D}g \ \Psi_{\mathrm{HH}}[g,\phi] \Psi^*_{\mathrm{HH}}[g,\phi] \right] \ |\phi\rangle \otimes \langle \phi'| \,.$$

Trace of the square of reduced density matrix operator [6]:

$$\operatorname{Tr}_M \hat{\rho}_M^2 = 0.977 \pm 0.002$$

Consequences

- Matter does not decohere, it is by default decohered.
- The impact to the decoherence programme: allows for an explicit system-apparatus-environment tripartite interaction violating the stability criterion of a faithful measurement.
- A confirmation of a "spacetime as an emergent phenomenon".
- A possible candidate for a criterion for a plausible theory of quantum gravity.
- Introduces an effective "exchange-like" interaction, possibly violating the weak equivalence principle.

Bibliography

- M. Blagojević, Gravitation and Gauge Symmetries, Institute of Physics Publishing, Bristol (2004).
- [2] P. A. M. Dirac, *Proc. Roy. Soc.* A246, 333 (1958).
- [3] S. Gupta, Proc. Phys. Soc. A63, 681 (1950).
- [4] K. Bleuler, *Helv. Phys. Acta* **23**, 567 (1950).
- [5] J. B. Hartle and S. W. Hawking, *Phys. Rev. D* 28, 2960 (1983).
- [6] N. Paunković and M. Vojinović, arXiv:1702.07744.

THANK YOU!