VIOLATION OF THE WEAK EQUIVALENCE PRINCIPLE DUE TO GRAVITY-MATTER ENTANGLEMENT

TÉCNICO

Nikola Paunković^{1,2}

Francisco Pipa³

Marko Vojinović⁴

¹ Department of Mathematics, IST, University of Lisbon ² Security and Quantum Information Group (SQIG), Institute of Telecommunications, Lisbon

NP acknowledges the financial support of the IT Research Unit, ref. UID/EEA/50008/2013 and the IT project QbigD funded by FCT PEst-OE/EEI/LA0008/2013 ³ Department of Physics, IST, University of Lisbon
 ⁴ Group for Gravitation, Particles and Fields (GPF), Institute of Physics, University of Belgrade

Abstract

We show the violation of the Weak Equivalence Principle in the presence of the entanglement between gravity and matter [1]. We analyse a simple toy scenario in which the entangled gravity-matter state consists of two terms: a dominant (classical) one, and a small perturbation. We rewrite the new geodesic equation as a geodesic equation for the dominant classical metric plus a contribution, coming from the interference terms between the dominant and perturbative gravity-matter fields. The additional term represents the deviation from the original geodesic equation due to the presence of gravity-matter entanglement, and measures the violation of the weak equivalence principle.

Weak Equivalence Principle (WEP)

The local effects of particle motion in a gravitational field are indistinguishable from those of an accelerated observer in flat spacetime.

Consequence

A particle in a gravitational field should follow the geodesic, since this is how the straight line in flat space looks like from the accelerated frame.

Single-pole approximation

Quantising gravity

Fundamental gravitational degrees of freedom \hat{g} and $\hat{\pi}_g$:

$$\Delta \hat{g} \Delta \hat{\pi}_g \ge \frac{\hbar}{2} \qquad \Delta \hat{\phi} \Delta \hat{\pi}$$

$$|\Psi\rangle = |g\rangle \otimes |\phi\rangle$$

 $|g\rangle$ and $|\phi\rangle$ – coherent states of gravity and matter.

 $g_{\mu\nu} \equiv \langle \Psi | \hat{g}_{\mu\nu} | \Psi \rangle \qquad T_{\mu\nu} \equiv \langle \Psi | \hat{T}_{\mu\nu} | \Psi$

$$T^{\mu\nu}(x) = \int_{\mathcal{C}} d\tau \, B^{\mu\nu}(\tau) \frac{\delta^{(4)}(x - z(\tau))}{\sqrt{-g}} \qquad (1)$$

Conservation of stress-energy tensor

We assume the local Poincaré invariance for both $S_G[g]$ and $S_M[g, \phi]$

 $\nabla_{\nu}T^{\mu\nu} = 0 \tag{2}$

Derivation of WEP (geodesic motion) from General Relativity

Replacing (2) into (1), we obtain the geodesic equation, with $u^{\mu} \equiv \frac{dz^{\mu}(\tau)}{d\tau}$ and $u^{\mu}u_{\mu} \equiv -1$ (Mathisson and Papapetrou [2, 3]; see also [4]) $u^{\lambda} \nabla_{\lambda} u^{\mu} = 0$
$$\begin{split} \textbf{Violation of WEP due to entanglement} \\ \hline \textbf{Fintangled" metric} \\ \textbf{g}_{\mu\nu} = \langle \Psi | \hat{g}_{\mu\nu} | \Psi \rangle \\ \hline \textbf{W} \rangle = \alpha | \Psi \rangle + \beta | \tilde{\Psi} \rangle \\ \hline \textbf{Ferturbation, with coherent} \\ \textbf{chassical states } | \tilde{g} \rangle & \text{and } | \tilde{g} \rangle \\ \hline \textbf{W} \rangle = g \mu \nu + \beta h \mu \nu + \beta (\beta^2) \\ \hline \textbf{W} \rho = 2 \operatorname{Re} \left[\langle \Psi | \hat{g}_{\mu\nu} | \tilde{\Psi} \rangle - \langle \Psi | \tilde{\Psi} \rangle g_{\mu\nu} \right] \\ \mu \nu = 2 \operatorname{Re} \left[\langle \Psi | \hat{g}_{\mu\nu} | \tilde{\Psi} \rangle - \langle \Psi | \tilde{\Psi} \rangle g_{\mu\nu} \right] \\ \mu^{\lambda} \nabla_{\lambda} u^{\mu} + \beta \left(\nabla_{\rho} h^{\mu}{}_{\nu} - \frac{1}{2} \nabla^{\mu} h_{\nu\rho} \right) u^{\rho} u^{\nu} + \mathcal{O}(\beta^2) = 0 \end{split}$$

$$\frac{d^2 z^{\mu}(\tau)}{d\tau^2} + \boldsymbol{\Gamma}^{\mu}{}_{\rho\nu} \frac{dz^{\rho}(\tau)}{d\tau} \frac{dz^{\nu}(\tau)}{d\tau} = 0 , \qquad \qquad$$

Discussion

- Both matter and gravity are considered quantum no semiclassical approximations and the associated errors.
- In Newtonian physics, due to the specific dynamical and gravitational laws $(m_i a = m_g g)$, WEP implies the equality of two types of masses, $m_i = m_g$. The laws of quantum mechanics, however, may not directly imply that $m_i = m_g$ as a consequence of WEP. On the other hand, the deviation from the geodesic trajectory is a more universal signal of WEP violation.
- Further analysis of (2) for the 'entangled" stress-energy tensor $T_{\mu\nu} = \langle \Psi | \hat{T}_{\mu\nu} | \Psi \rangle$ can be done obtaining the domain of validity of the single-pole approximation.
- Quantitative analysis might allow for possible future experimental verification of the gravity-matter entanglement and thus an answer to the open question of the necessity of quantising gravity.

where the Cristoffel symbols are given by:

 $\boldsymbol{\Gamma}^{\mu}{}_{\rho\nu} = \frac{1}{2} \boldsymbol{g}^{\mu\sigma} (\partial_{\rho} \boldsymbol{g}_{\nu\sigma} + \partial_{\nu} \boldsymbol{g}_{\sigma\rho} - \partial_{\sigma} \boldsymbol{g}_{\rho\nu}) \,.$

References

[1] N. Paunković and M. Vojinović, (2017), arXiv:1702.07744
[2] M. Mathisson, Acta Phys. Polon. 6, 163 (1937)
[3] A. Papapetrou, Proc. R. Soc. A 209, 248 (1951)
[4] M. Vasilić and M. Vojinović, JHEP , 0707, 028 (2007), arXiv:0707.3395

₽T_EX TikZposter

646. Wilhelm und Else Heraeus–Seminar on "Gravitational decoherence", Physikzentrum Bad Honnef, 26 - 28 June 2017