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Things to note:

• PL-structure (a triangulation) is not a regulator, but a physical entity;

• UV-completion: inside a 4-simplex, spacetime is flat and matter fields are constant;

• finite number of degrees of freedom (in a finite volume);

• field theory reconstructed only as an approximation, like in fluid mechanics.



SPINCUBE MODEL OF QG

Classical theory — constrained BFCG action:

S =

∫
Bab ∧Rab + ea ∧∇βa︸ ︷︷ ︸

topological theory

−φab ∧
(
Bab − εabcd ec ∧ ed

)
︸ ︷︷ ︸

simplicity constraint

.

Basic properties:

• equivalent to general relativity,

• similar in structure to the Plebanski action,

• contains tetrad fields in the topological sector,

• coupling to matter fields completely straightforward,

• based on 2BF action for the Poincaré 2-group.
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Edge and triangle amplitudes Aε and A∆ are chosen such that they

impose the simplicity constraint between l’s and m’s:

|m∆| =
1

γl2p
AH (lε1, lε2, lε3) , ε1, ε2, ε3 ∈ ∆, ∀∆ ∈ T.
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|m1| = A1(l1, . . . , lE),
...
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l1 = L1(m1, . . . ,mE),

...

lE = LE(m1, . . . ,mE),

|mE+1| = AE+1(l1, . . . , lE),
...

|mF | = AF (l1, . . . , lE),

 ⇒


|mE+1| = f1(m1, . . . ,mE),

...

|mF | = fF−E(m1, . . . ,mE).

Either impose the simplicity constraint weakly (i.e. on-shell, see talk

by A. Miković), or prove that the system of Diophantine equations has

a nonempty set of solutions!
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m612 = m512, m623 = m523,

m613 = m513, m624 = m524,

m614 = m514, m634 = m534.

The case of general triangulation (F > E): proof by induction! In the

generic case, all 4-simplices in the triangulation must be equal.
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lε = Lε(m1, . . . ,m10), ∀ε ∈ T,

we implement the simplicity constraint by choosing the amplitudes as

Aε(l,m) = δ(lε − Lε), A∆(l,m) = χ

(
|m∆| −

1

γl2p
AH(Lε∈∆)

)
,

so the spincube state sum becomes:

Z =
∑
T∈T

∑
m1∈Z

. . .
∑
m10∈Z

eiSR(L(m)).

Since m1, . . . ,m10 belong to the same 4-simplex, we can commute the

sums and write

Z =
∑
m1∈Z

. . .
∑
m10∈Z

(∑
T∈T

eiSR(L(m))

)
.



RELATION TO CDT

Consider the special case of isosceles 4-simplices, such that lε ∈ {a, b}.
There are 40 such simplices in total:

, , , , ,

, , , , ,

, , , , ,

, , , , ,

plus the “thick↔thin” inverted ones (“thin”= a, “thick”= b). In gen-

eral, these simplices contain four types of triangles,

(a, a, a), (a, a, b), (a, b, b), (b, b, b),

so the simplicity constraint consists of 4 equations for 2 variables, and

has no solution.
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CONCLUSIONS

Overview of results:

• simplicity constraint can be imposed strongly, so that the spincube model is well

defined, despite overcomplete system of equations;

• two classes of solutions: identical irregular 4-simplices, and three types of isosceles

4-simplices;

• CDT is one of isosceles solutions, and thus a special case of the spincube model.

Topics for further research:

• classify solutions containing only 3, 4, . . . , 9 different edges;

• repeat the CDT phase-transition analysis for all other classes, study what happens

to phases when one varies the edge-length parameters;

• introduce matter fields, study realistic QG systems;

• study the relationship between the two semiclassical limits: average over many

triangulations, or take l,m→∞, or both?

⇒ More people is needed to do all this!



THANK YOU!


