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Abstract

This is a sketch of the renormalization procedure in perturbative QFT, based on the lecture notes
I had prepared for the series of TQFTclub seminars on the same topic given in the CAMGSD group,
IST, Lisbon, Portugal during the winter 2013/2014.

1 Introduction

Renormalization in Quantum Field Theory has been considered a controversial topic since its incep-
tion. There is a lot of literature on the subject, but virtually all that literature requires a nontrivial
amount of knowledge of QFT itself. Moreover, in most textbooks the renormalization procedure is typi-
cally being discussed on one or more examples. Thus, for a reader who is not familiar enough with QFT
itself, and who does not want to invest (a lot of) time studying QFT, the discussion of renormalization in
textbooks is usually too cryptic. Moreover, as it is demonstrated on examples, the non-initiated reader
has a hard time distinguishing the generic properties of renormalization idea itself from the particularities
of a given example.

The aim of these lecture notes is to (hopefully) disentangle the renormalization idea from the detailed
knowledge of QFT, and to present it as clearly as possible. Our approach is therefore to introduce only
the absolute minimum of the QFT formalism, just enough to be able to express the renormalization
procedure. The result is the abstract idea of what is being done, stripped of all particularities and details
of various example QFT’s which are to be renormalized. Of course, in order to illustrate these abstract
ideas, one example theory is discussed in detail. However, all details regarding the example QFT —
which, although important in their own right, are irrelevant for the renormalization procedure itself —
will be omitted.

Note that these notes do not represent a complete account of renormalization. A lot of material is not
mentioned in enough detail, or at all. Instead, the emphasis has been put on the process of “cancellation
of infinities” in a given theory, and its consistency. The whole “industry” of the advanced topics —
detailed analysis of renormalization group equations, beta function, scaling, self-similarity and fractals,
universality, coarse graining, (ir)relevant and marginal operators, power laws and phase transitions,
effective field theories, gauge theories, symmetries, anomalies, etc. . . — are not discussed.

Also, all the material covered by these notes can also be found in most of the usual textbooks on QFT
(see for example [1, 2, 3]) in some shape and form, but not necessarily using the language and fashion
that we use. In that sense, these notes do not contain any original results, but the presentation of the
material contains some level of originality. If there is a textbook discussing renormalization in the way I
did here, I’d like to know about it, please send me the reference!

The layout is the following. In section 2, we give a short introduction into the path integral formalism
of QFT. We give a definition of the n-point functions, construct the path integral for the free field theory,
and introduce the interacting QFT by means of perturbation theory. The material in this section lays
minimal foundations and language of QFT necessary for the following sections. Section 3 discusses the
details of the renormalization procedure, in abstract language developed in the previous section. The
topics of normalization, regularization, renormalization and renormalization group are covered in turn.
Section 4 deals with the explicit (and simplest possible) example of φ4 scalar field theory. All steps of the
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abstract procedure discussed in previous sections are explicitly demonstrated. After the normalization,
regularization and renormalization of the theory, the renormalization group equations are established (to
the lowest order in perturbation theory), and their meaning is discussed. At the end there is a short
list of literature that cover these topics in more depth, which the reader may be interested to look at as
additional sources of information.

2 Path integral formalism

2.1 The n-point functions

In the path integral formulation, a typical QFT is specified by providing a method to calculate n-point
functions, as:

Gn(x1, . . . , xn) =

∫
Dφ φ(x1) . . . φ(xn) eiS[φ]. (1)

This equation is descriptive only (the so-called “statement of intent”), as we are yet to give a definition of
the right-hand side. In fact, the whole topic of these notes is aimed at providing an appropriate definition
of the right-hand side. We will do this through a series of plausible formal manipulations of symbols, and
going out of our way to obtain a non-divergent result for all n-point functions.

The first step is to represent the n-point functions as derivatives of a suitable generating functional.
Using the functional generalization of the “obvious” identity

f(x) eixJ = f
(
−i ∂∂J

)
eixJ , (2)

we can formally rewrite (1) as

Gn(x1, . . . , xn)
def
=(−i)n δ

δJ(x1)
. . .

δ

δJ(xn)
Z[J ]

∣∣∣
J=0

,

where the generating functional

Z[J ] =

∫
Dφ eiS[φ]+i

∫
d4xφ(x)J(x)

is yet to be defined. In this way we have reduced the problem of defining all n-point functions to the
problem of defining only one object Z[J ]. Some notes:

• The functional S[φ] is called the classical action, and it is assumed to be specified in advance. The
functions φ = (φ1, . . . , φN ) are fields defined over a flat Minkowski spacetime (we use the convention
(−,+,+,+) for the signature of the metric).

• The functions J are called the source fields and represent the test-functions for the whole formalism,
in the sense of functional analysis. The integral of φJ has the whole spacetime, R4, as the domain
of integration.

• The object Z[J ] goes by several names: generating functional, partition function, path integral with
sources, state sum. We will typically use the last of those names, since it is the shortest one.

• The measure Dφ in the path integral is yet to be defined.

• Specifying a particular state sum Z[J ] is equivalent to specifying a particular quantum field theory
based on the classical action S[φ].

The n-point functions are important because they can be connected to experimental measurements via the
so-called LSZ formalism (constructed by H. Lehmann, K. Symanzik and W. Zimmermann). Therefore,
one can intuitively understand equation (1) in the sense that the left-hand side can be “measured” in
experiment, while the right-hand side can be “calculated” by the theory. In this sense one establishes a
connection between a theory and experiment, and verifies the amount of agreement between the theoretical
predictions and experimental data.
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2.2 Perturbation theory formalism

The perturbation theory is introduced by distinguishing the free field theory from the interacting field
theory. The interactions are measured by some suitable small parameter, and the interacting theory is
then represented as a “perturbation” of the free theory, i.e. as an asymptotic series in the perturbation
parameter. The general construction of free and interacting theories proceeds as follows. Begin by
expanding the classical action functional into formal power series in the fields φ as:

S[φ] = S[0] +

∫
R4

d4x∆1(x)φ(x)+

+
1

2

∫
R4

d4x′
∫
R4

d4x′′∆2(x′, x′′)φ(x′)φ(x′′)+

+
1

3!

∫
R4

d4x′
∫
R4

d4x′′
∫
R4

d4x′′′∆3(x′, x′′, x′′′)φ(x′)φ(x′′)φ(x′′′) + . . .

The series is expanded around the point φ = 0, which is called the vacuum. The kernels ∆1, ∆2, . . . ,
are differential operators of some order, and they typically contain some parameters called the coupling
constants g = {g1, g2, . . . }.

When constructing the state sum Z[J ], one may safely omit the constant and the linear term, without
loss of generality. The term quadratic in the fields is called the kinetic or free part of the action,

Skin[φ] ≡ 1

2

∫
R4

d4x′
∫
R4

d4x′′∆2(x′, x′′)φ(x′)φ(x′′),

while cubic and higher order terms are collectively called the interaction part of the action,

Sint[φ] ≡ 1

3!

∫
R4

d4x′
∫
R4

d4x′′
∫
R4

d4x′′′∆3(x′, x′′, x′′′)φ(x′)φ(x′′)φ(x′′′) + . . . ,

so we can write the classical action as

S[φ] = Skin[φ] + Sint[φ]. (3)

After separating the action into kinetic and interaction parts, substitute it into the expression for the
state sum, and employ again the trick (2) to rewrite it in the form

Z[J ] =

∫
Dφ eiSkin[φ]eiSint[φ]ei

∫
φJ = eiSint[−i δδJ ]Zfree[J ],

where

Zfree[J ] =

∫
Dφ eiSkin[φ]+i

∫
φJ =

∫
Dφ e i2

∫
d4x′

∫
d4x′′ φ(x′)∆(x′,x′′)φ(x′′)+i

∫
d4xφ(x)J(x). (4)

The idea here is to reduce the task of defining the path integral for an interacting QFT to the task of
defining if for a free QFT. Namely, now we need to define the concept of a path integral only for the
exponent which is quadratic in fields φ, which is a substantially simpler task.

The definition of the free-field state sum (4) is obtained by generalizing the Gaussian integral (for
Euclidean QFT) and the Fresnel integral (for Minkowskian QFT) to a suitable number of dimensions.
The fundamental Gauss and Fresnel integrals are∫

R
dx e−x

2

=
√
π and

∫
R
dx eix

2

=
√
π e

iπ
4 .

Since we are interested in the Minkowskian QFT we will focus on the Fresnel integral. As a first step, it
can be modified to contain the general quadratic form in the exponent of the integrand. By completing
the square, one can easily prove that∫

R
dx e

i
2 ∆x2+iJx =

√
2π

∆
e
iπ
4 e−i

J2

2∆ , (∆, J ∈ R and ∆ > 0). (5)
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From the point of view of QFT, this integral is “for one spacetime point”. This means that the integration
variable x is understood to be a function mapping “spacetime” M = {1} to a real number,

x : {1} → R.

The second step is to generalize (5) to n “spacetime points”, M = {1, 2, . . . , n} as:

∫
Rn
dx1 . . . dxn exp

 i

2

n∑
k,l=1

xk∆klxl + i

n∑
k=1

Jkxk

 =

√
(2π)n

det ∆
e
inπ
4 exp

− i
2

n∑
k,l=1

Jk(∆−1)klJl

 , (6)

(∆kl, Jk ∈ R, ∆ = ∆T and det ∆ > 0).

Here the indices k, l, . . . denote spacetime points, while integration variables x1, . . . , xn are functions
mapping “spacetime” to real numbers,

xk : {1, 2, . . . , n} → R.

The third step is to take the limit n→∞ and to extend the spacetime from n points to a full 4-dimensional
continuum manifold of points:

M = {1, 2, . . . , n} n→∞−−−−→ M = R4.

With a change of notation k → x ≡ (x0, x1, x2, x3) for a spacetime point and xk → φ(x) for the integration
variable, the latter is now taken to be a function mapping “spacetime” to real numbers,

φ : R4 → R.

Using a suitable change of notation from discrete to functional quantities,

k → x, xk → φ(x), ∆kl → ∆(x, x′), Jk → J(x),

n∑
k=1

→
∫
R4

d4x,

∫
Rn
dx1 . . . dxn →

∫
RR4
Dφ,

we generalize the Fresnel integral (6) to its functional version:∫
RR4
Dφ exp

(
i

2

∫
R4

d4x′
∫
R4

d4x′′ φ(x′)∆(x′, x′′)φ(x′′) + i

∫
R4

d4x φ(x)J(x)

)
def
=

(7)

def
=

[
lim
n→∞

√
(2π)n

det ∆
e
inπ
4

]
exp

(
− i

2

∫
R4

d4x′
∫
R4

d4x′′J(x′)∆−1(x′, x′′)J(x′′)

)
.

Several comments are in order:

• Equation (7) represents the definition of the left-hand side, more precisely an implicit definition of
the measure Dφ for the path integral.

• In addition to being a definition of the path integral, equation (7) is also automatically the evaluation
of that integral.

• The domain of integration is the set of all possible configurations (i.e. “paths”) that the field φ can

take over the spacetime R4. It is a set of all functions φ : R4 → R, and is commonly denoted RR4

.

• The operator ∆(x, x′) is assumed to be regular, i.e. to have a well-defined inverse ∆−1(x, x′), given
a suitable set of test functions J(x).
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• The left-hand side of (7) is precisely the expression for the free-field QFT state sum (4) which we
have set out to define.

• The factor in the square brackets,

N ≡ lim
n→∞

√
(2π)n

det ∆
e
inπ
4 ,

is called the normalization constant, and is highly ill-defined: in the limit n → ∞ the exponent
e
iπ
4 oscillates, the numerator (2π)n diverges, while the functional determinant1 in the denominator

needs to be discussed on a case-by-case basis, depending on the properties of ∆(x, x′).

This concludes the definition of the path integral in perturbative QFT. Using (4) and (7), we obtain

Zfree[J ] = N e−
i
2

∫
d4x′

∫
d4x′′J(x′)∆−1(x′,x′′)J(x′′) (8)

for the state sum of the free-field theory, and

Z[J ] = eiSint[−i δδJ ] Zfree[J ] (9)

for the interacting field theory.
The interaction operator eiSint[−i δδJ ] is defined as a power series expansion in the coupling constants

g present in Sint[φ]. One typically truncates the series at some particular power of g, which is called the
perturbation order.

3 Renormalization

Despite the above efforts, the state sums (8) and (9) are still not defined quite completely. First, in
most situations of physical interest, the operator ∆(x, x′) is not invertible. Second, all n-point functions
calculated from these state sums will be proportional to the ill-defined constant N , rendering them un-
usable. And finally, as we shall see later, the interaction operator eiSint introduces additional divergences
into the theory, and is thus also ill-defined.

For each of these three problems there is a developed solution, and each solution entails a yet another
redefinition of the theory:

Problem: Solution:

∆−1 is not defined Wick rotation

N is not defined Normalization

eiSint[−i δδJ ] is not defined Renormalization

In these notes, we will completely omit the discussion of the Wick rotation procedure. We will just
state that the procedure entails a redefinition of the kinetic operator ∆(x, x′) so that it becomes invertible.
Its inverse will simply be denoted ∆−1(x, x′).

The normalization and renormalization procedures, along with the regularization procedure which is
necessary precursor for renormalization, will be discussed in turn in the following sections.

1The functional determinant of an operator ∆(x, x′) is commonly defined by starting from the matrix identity

det ∆ = etr log ∆ = etr log[I+(∆−I)],

and generalizing it to a functional equation. The logarithm is expanded into its Taylor series around the unit operator, so
we can write explicitly

det ∆ = exp

[ ∞∑
n=1

(−1)n+1

n

∫
R4
d4x1 . . .

∫
R4
d4xn

[
∆ − I

]
(x1, x2)

[
∆ − I

]
(x2, x3) . . .

[
∆ − I

]
(xn, x1)

]
,

where [
∆ − I

]
(x, x′) ≡ ∆(x, x′) − δ(4)(x− x′).

If the spectrum of ∆ is discrete, its determinant reduces to the product of its eigenvalues.
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3.1 Normalization

Normalization is the procedure of defining a new and better state sum Znorm[J ] from the old state sum
Z[J ] given by (9), in order to eliminate the normalization constant N from the theory. The procedure
is quite simple, and mimics the procedure of normalizing a vector, where one defines a “unit” vector by
dividing the original vector by its norm. Using that analogy as motivation, we define:

Z[J ]
normalization−−−−−→ Znorm[J ]

def
=

Z[J ]

Z[J = 0]
=

eiSint[−i δδJ ]Zfree[J ]

eiSint[−i δδJ ]Zfree[J ]
∣∣∣
J=0

. (10)

The normalization constant N is automatically canceled between the numerator and denominator, and
is absent from Znorm[J ].

When dealing with a free-field theory, the normalization step is enough to make the theory completely
well-defined. In an interacting theory, however, the interaction operator introduces additional divergences,
which can generally be divided into:

• bubble divergences, which appear inside J-independent terms of the interaction operator, and

• loop divergences, which appear inside J-dependent terms.

As we shall demonstrate later in an example, the normalization automatically removes all bubble diver-
gences, thereby improving interacting theories even beyond the cancellation of N . Nevertheless, the loop
divergences are not removed by normalization, and require an additional redefinition of the theory —
renormalization.

3.2 Regularization

As a necessary precursor to renormalization, we need to perform a parametrization of all loop di-
vergences that appear in the interaction operator eiSint[−i δδJ ]. This parametrization procedure is called
regularization, and it consists of substituting the normalized state sum with the regularized state sum,
which depends on the regularization parameter, typically denoted as ε:

Znorm[J ]
regularization−−−−−→ Zreg[J, ε].

In particular, this is done by defining a new interaction operator,

eiSint[−i δδJ ] regularization−−−−−→ eiSint[−i δδJ ,ε], (11)

such that the following two requirements are satisfied:

1. In the limit ε→ 0 the interaction operator should reduce to the original operator (with divergences),

lim
ε→0

eiSint[−i δδJ ,ε] = eiSint[−i δδJ ]. (12)

2. For any fixed nonzero value of the regularization parameter ε, the regularized state sum must be
finite, for all choices of the test function J(x):

Zreg[J, ε]
def
=

eiSint[−i δδJ ,ε]Zfree[J ]

eiSint[−i δδJ ,ε]Zfree[J ]
∣∣∣
J=0

<∞, for fixed ε 6= 0. (13)

In general, the regularized state sum can be represented as a sum of two parts,

Zreg[J, ε] = Zdiv
reg [J, ε] + Zconv

reg [J, ε], (ε→ 0). (14)
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The divergent part typically behaves as O(ε−n) or O(log ε) for some n ∈ N as ε → 0. The convergent
part behaves as O(1) or O(εn) in the same limit.

The regularization procedure is not unique. In particular, the regularization parameter ε can be
introduced in a variety of ways, and as a consequence the convergent piece of the regularized state sum
may be different. This is a consequence of the general fact that

∞ =∞+ const.

Any particular implementation of regularization is called a regularization scheme, and we can differentiate

between state sums Z
(A)
reg [J, ε] and Z

(B)
reg [J, ε] obtained using regularization schemes A and B, respectively.

In practice, there are several well-developed techniques: cutoff, dimensional, lattice, Pauli-Villars, point-
splitting, ζ-function, etc. regularizations. Each technique can be advantageous for a particular purpose,
although they are conceptually all the same — they all parametrize infinite terms in the normalized state
sum. We will demonstrate dimensional and cutoff regularization techniques in an example later in the
text.

It should be stressed that, as long as requirements (12) and (13) are met, the choice of regularization
scheme is limited only by our imagination.

3.3 Renormalization

The regularized state sum suffers from two fundamental problems. First, the state sum Z
(A)
reg [J, ε] (and

consequently all n-point functions calculated from it) depends on the choice of the regularization scheme
A, which is arbitrary. This arbitrariness needs to be addressed somehow if we are to construct a unique

quantum theory. Second, all n-point functions calculated from Z
(A)
reg [J, ε] explicitly depend on the value

of the regularization parameter ε. As this parameter is unphysical and never observed in experiment, it
needs to be removed from the theory in some way.

The first problem is addressed by the so-called renormalization group, discussed in the next section.
The second problem is addressed by renormalization.

Renormalization represents yet another (and final) redefinition of the state sum, which removes the
regularization parameter from the state sum:

Zreg[J, ε]
renormalization−−−−−−→ Zren[J ].

This is done by redefining the interaction operator such that the divergent piece of the state sum is
suitably removed (subtracted), and subsequently taking the limit ε → 0 on the remainder. This will
eventually give a finite result, independent of ε.

The interaction operator is being redefined by adding new terms to the classical action — the so-called
counterterms:

eiSint[−i δδJ ,ε] renormalization−−−−−−→ eiSint[−i δδJ ,ε]+iSct[−i δδJ ,ε]. (15)

Counterterms enter the action with their own set of coupling constants c = {c1, . . . , cK}. These constants
are assumed to have an ε-dependent divergent piece, and an additional finite piece:

c = cdiv(ε) + cconv.

The divergent piece will be uniquely determined below, while the finite piece can be chosen arbitrarily,
and its choice is called the renormalization scheme. Similar to regularization schemes, there are infinitely
many renormalization schemes, and some typically used are the on-shell scheme, the minimal-subtraction
scheme and the modified minimal-subtraction scheme. The arbitrariness of the renormalization scheme is
again a manifestation of the general fact

∞ =∞+ const.

Given the framework of perturbation theory, the exponent of the counterterm action is also expanded
into power series for the coupling constants, and the series is truncated at a given perturbation order.
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As a consequence, the state sum is modified from the original regularized state sum to the one that has
additional contribution from the counterterms:

Zreg[J, ε]
renormalization−−−−−−→ Zreg[J, ε] + Zct[J, ε], (16)

and the counterterm state sum also splits into the divergent and finite part,

Zct[J, ε] = Zdiv
ct [J, ε] + Zconv

ct [J, ε], (ε→ 0). (17)

Next, the functional form of the counterterms is chosen such that the dependence of Zdiv
ct [J, ε] on the

sources J(x) is identical to the dependence of Zdiv
reg [J, ε]. This enables us to choose the divergent part of

the counterterm coupling constants cdiv(ε) such that the requirement

Zdiv
reg [J, ε] + Zdiv

ct [J, ε] = 0 (18)

is satisfied for all J(x). This requirement basically eliminates the divergent piece from the state sum, so
that we can finally define the renormalized state sum as:

Zreg[J, ε]
renormalization−−−−−−→ Zren[J ]

def
= lim
ε→0

(Zreg[J, ε] + Zct[J, ε]) . (19)

Comments:

• Definition (19), along with the requirement (18), represents the final form of the state sum for a
QFT, one that is completely finite and well-defined.

• All n-point functions that are calculated from Zren[J ] are also finite, independent of the regulariza-
tion parameter and can be compared to experiment.

• The arbitrariness in the choice of the regularization scheme (i.e. the arbitrary finite piece of
Zconv

reg [J, ε] from (14)) and the arbitrariness in the choice of the renormalization scheme (i.e. the
arbitrary finite piece of Zconv

ct [J, ε] from (17)) will give rise to a set of arbitrary parameters in the
theory. As a consequence, (19) is not unique, but represents a family of theories. The discussion of
this nonuniqueness is the topic of the renormalization group, taken in next section.

3.4 Renormalization group

Let us sum up all the steps in the construction of Zren[J ] so far. Starting from a classical action S[φ],
equation (3), we have first constructed a “naive” state sum Z[J ], equation (9), which was plagued by
divergences and ill-defined. Some of these problems were removed by introducing the normalized state
sum Znorm[J ], equation (10). However, the loop divergences survived, which required us to introduce
a regularized state sum Zreg[J, ε], equations (11), (12) and (13). In order to remove the regularization
parameter ε, we have introduced the counterterms into the classical theory, equation (15), and used them
to cancel away the divergent parts of Zreg[J, ε] before taking the limit ε → 0 and defining the final,
renormalized state sum Zren[J ], equation (19).

Unfortunately, the regularization and renormalization steps were not unique, and the resulting QFT
in general depends on the choices of regularization and renormalization schemes. This nonuniqueness
means that we have obtained not one, but a family of renormalized state sums, for a given classical
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action. The whole process can be described by the following diagram:

S[φ, g] Z[J, g] Znorm[J, g] Z
(A)
reg [J, g, ε] Z

(A)
ren [J, g, c1]

Z
(A)
ren [J, g, c2]

...

Z
(B)
reg [J, g, ε] Z

(B)
ren [J, g, c3]

Z
(B)
ren [J, g, c4]

...
...

quantization

Wick rotation

normalization regularization renormalization

In order for the whole process to be consistent, we must require that the resulting QFT be independent
of the choices of the regularization and renormalization schemes. In other words, we must prove that all
possible renormalized state sums obtainable by the above procedure form a suitable equivalence class,
thereby providing a unique QFT. More precisely, we must enforce the following requirement:

∀gn (perturbation order), ∀A,B (regularization schemes), ∀c, c̃ (renormalization schemes),

∃g, g̃ (coupling constants), ∀J(x) (test functions)

Z(A)
ren [J, g, c] = Z(B)

ren [J, g̃, c̃]. (20)

The equations (20) are called renormalization group equations. If they are satisfied, then different choices
of regularization and renormalization schemes lead merely to different representatives of the same equiv-
alence class, which represents a unique QFT.

In practice, the renormalization group equations are solved by assuming that the coupling constants
g are not constants, but rather functions of the counterterm coupling constants c, g = g(c). One then
formulates the renormalization group equations by taking derivatives of (20) with respect to counterterm
coupling constants, and enforcing appropriate boundary conditions:

∂

∂ck
Z(A)

ren [J, g(c), c] +
∂gm
∂ck

∂

∂gm
Z(A)

ren [J, g(c), c] = 0, and g(c̃) = g̃. (21)

Comments:

• Equations (21) are a system of linear partial differential equations for unknown functions g(c).

• The boundary condition g(c̃) = g̃ should fix a unique solution for g(c). It says that the solution
must contain the point (g̃, c̃), which is called the kinematical point, and is measured experimentally
for a given QFT.

• The factors ∂gm
∂ck

in (21) are called beta functions, and contain important information about various
properties of the given theory.

• Historically, equations (21) were first discussed in some special cases in scalar field theory and
quantum electrodynamics, and in older literature go by the name Callan-Symanzik equations.

• The solutions of (21) are sometimes graphically denoted on the so-called renormalization group flow
diagram, which (in a suitably complicated theory) may look like this:
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c

g

c̃

g̃

The choice of the kinematical point singles out one particular solution.

• The fact that coupling constants change their value depending on the choice of the counterterm
constants c is called running of the coupling constants.

• In most situations, one of the counterterm coupling constants c can be traded for the so-called
scale parameter. This establishes the dependence of coupling constants g on the length/energy
scale at which measurements are being performed. Experiments at various scales may start their
measurements from various kinematical points, but they must all lie on the same curve on the flow
diagram.

Let us denote the number of coupling constants g as ng and the number of counterterm coupling
constants c as nc. The number ng is determined by the form of the classical action S[φ], while nc
is determined by the number of different types of divergences in Znorm[J ]. Given this, equations (21)
represent a system of nc equations for ng unknown functions, and if ng < nc the system might be
overdetermined, and have no solutions. In that situation the renormalization group equations do not
exist, and the family of renormalized state sums does not form an equivalence class. In that sense, we
have the following important characterization.

Characterization

Given a classical action S[φ] and the family of all renormalized state sums Zren[J ]:

• if the renormalization group equations (20) do exist, the classical action S[φ] is said
to be renormalizable;

• if the renormalization group equations (20) do not exist, the classical action S[φ]
is said to be nonrenormalizable.

The most celebrated example of a renormalizable theory is the Standard Model of elementary particles,
while the most celebrated example of a nonrenormalizable theory is the theory of General Relativity.

This concludes our exposition of the renormalization. Note that there is a whole industry of further
results, essentially based on the analysis of renormalization group equations and their consequences for
the theory and experiment. In these notes we will not go any further into those topics. Instead, the next
section will focus on a simple explicit example, aimed to illustrate the abstract procedure described so
far.
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4 Example: φ4 theory

The theory of one real scalar field with the quartic potential is arguably the simplest nontrivial
example of a renormalizable theory. In what follows, we will use it to demonstrate the renormalization
procedure.

4.1 Classical theory and quantization

The classical action for the φ4 theory is

S[φ, g] =

∫
R4

d4x

[
Z2

2
φ(x)

(
�−m2

)
φ(x) +

λ

4!
φ4(x)

]
,

where we identify the set of coupling constants as g = {Z,m, λ}. The kinetic and potential parts of the
action can be written in the form

Skin[φ] =
1

2

∫
R4

d4x′
∫
R4

d4x′′ φ(x′)∆(x′, x′′)φ(x′′), Sint[φ] =
λ

4!

∫
R4

d4x φ4(x),

where the operator ∆ in the kinetic term is given as

∆(x, y) = Z2δ(4)(x− y)
(
�y −m2

)
.

Note that this operator is singular, i.e. it does not have an inverse, due to the non-positive-definite
Minkowski metric inside the D’Alambertian operator �. The standard procedure in these circumstances
is to resort to the Wick rotation, which modifies the operator ∆ slightly, rendering it invertible. Without
getting into the discussion how this is done, for the purposes of these lecture notes we simply specify the
respective inverse operator, by definition, to be

∆−1(x, y)
def
=

1

Z2
lim
ξ→0

∫
R4

d4p
ei(x−y)p

−p2 −m2 + iξ
. (22)

This inverse is called the Feynman propagator. It has the following three important properties:

1. it is symmetric,
∆−1(x, y) = ∆−1(y, x),

2. in the limit x→ y its asymptotic behavior is

∆−1(x, y) ≈ const

|(x− y)2|
,

3. the diagonal elements are divergent (as a consequence of the above asymptotics)

∆−1(x, x) =∞. (23)

The interaction part of the action gives rise to the interaction operator,

eiSint[−i δδJ ] = e
i λ4!

∫
R4 d

4x δ4

δJ(x)4 = 1 + i
λ

4!

∫
R4

d4x
δ4

δJ(x)4
+O(λ2), (24)

where we have expanded the exponential into power series and truncated it at the lowest nontrivial order
in the interaction coupling constant λ, in line with the idea of perturbation theory. Throughout these
lecture notes, we will systematically discuss the φ4 theory only up to this perturbation order, since it
represents the simplest possible example.

11



At this point we have all the necessary ingredients to construct the naive QFT state sum (9). Acting
explicitly with the interaction operator (24) onto the free-field state sum Zfree[J ], we obtain the following
interacting state sum:

Z[J ] = N

[
1 +

1

8
iλ

∫
d4x[−i∆−1(x, x)]2 +

1

4
iλ

∫
d4x[−i∆−1(x, x)]

(∫
d4x′J(x′)[−i∆−1(x, x′)]

)2

+
1

24
iλ

∫
d4x

(∫
d4x′J(x′)[−i∆−1(x, x′)]

)4
]
e−

i
2

∫
d4x′

∫
d4x′′J(x′)∆−1(x′,x′′)J(x′′). (25)

At this point it will prove very convenient to introduce the Feynman rules, which provide a graphical
representation for the various expressions appearing in (25):

− i∆−1(x, y) ≡
x y

,∫
R4

d4x J(x) ≡
x
,

iλ

∫
R4

d4x ≡
x

.

Note that in the third rule, all four “legs” of the diagram are assumed to be contracted into the single
point x. We draw a cross instead of a single point simply to make its four-valent structure graphically
explicit. The Feynman rules establish a 1-to-1 correspondence between the analytic expressions in (25)
and the Feynman diagrams, which we will use systematically from now on. Using Feynman rules, the
state sum (25) can be rewritten as

Z[J ] = N
[
1 +

1

8
+

1

4
+

1

24

]
e

1
2 .

In this graphical representation, it is easy to notice that the state sum features two potentially divergent
diagrams — one source-independent bubble diagram, and one source-dependent loop diagram. In higher
perturbation orders, additional more complicated diagrams of both types will appear.

4.2 Normalization

The next step in the procedure is to construct the normalized state sum (10), in order to get rid of
the ill-defined normalization constant N :

Znorm[J ]
def
=

Z[J ]

Z[J = 0]
=

N
[
1 +

1

8
+

1

4
+

1

24

]
e

1
2

N
[
1 +

1

8

] .

We see that the normalization constant cancels away. In addition, in line with the perturbation theory,
we need to re-expand the expression into power series in λ, since it appears inside the bubble diagram in
the denominator. Using the Taylor expansion rule

1 + aλ

1 + bλ
≈ 1 + (a− b)λ+O(λ2),

we see that the bubble diagrams from the numerator and the denominator will also cancel away. The
cancellation of bubble diagrams is a generic property of the normalization step, and it can be proved that
it happens automatically up to any order in perturbation theory. The final form of the normalized state
sum is thus

Znorm[J ] =

[
1 +

1

4
+

1

24

]
e

1
2 .
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4.3 Regularization

The normalized state sum features one loop diagram, which contains a propagator evaluated at a
diagonal point. As a consequence, according to (23) this diagram will diverge, for any nontrivial value
of the sources J(x). The presence of this divergence requires the regularization procedure. As we have
discussed previously, the regularization procedure is not unique, and in order to demonstrate this we will
regularize Znorm[J ] using two different regularization schemes.

A regularization scheme is any particular recipe to parametrize the divergence present in the state
sum. We will first demonstrate the cutoff regularization scheme. Begin by noting that, according to (22),
the diagonal value of the propagator ∆−1(x, x) does not actually depend on the point x. Consequently
we will denote it simply as ∆−1. The first step of the cutoff regularization is to rewrite the divergent
term ∆−1 into a spherically-symmetric form,

∆−1 =
1

Z2
lim
ξ→0

∫
R4

d4p
1

−p2 −m2 + iξ
=

(
change vars to
4D spherical
coordinates

)
=

1

Z2
lim
ξ→0

∫
S3

d3Ω

∫ ∞
0

dpr
|I(pr,Ω)|

−p2
r −m2 + iξ

.

The divergence is now contained in the radial integral, while the integral over the sphere S3 is finite.
We now regularize the radial integral by restricting the domain of integration — we introduce a cutoff
parameter Λ, and integrate only in the domain [0,Λ], instead of [0,∞):

∆−1(Λ)
def
=

1

Z2
lim
ξ→0

∫
S3

d3Ω

∫ Λ

0

dpr
|I(pr,Ω)|

−p2
r −m2 + iξ

= · · · = iπ2m2

Z2

[
log

(
1 +

Λ2

m2

)
− Λ2

m2

]
.

This intervention renders the integral finite, and it can be evaluated to give the expression on the right-
hand side (we omit the actual details of evaluation). The regularized propagator ∆−1(Λ) will coincide
with the original ∆−1 in the limit Λ → ∞. Note that in higher perturbation orders one would have
several different divergent loop diagrams, and one is supposed to regularize each of them consistently, i.e.
using the same technique of rewriting in spherical coordinates and introducing the cutoff Λ in the radial
integral.

Alternatively, we can use the dimensional regularization scheme. In contrast to the cutoff regulariza-
tion, we will not restrict the integration domain. Instead, we will analyze the following family of integrals
in D spacetime dimensions:

∆−1(D,n)
def
=

1

Z2
lim
ξ→0

∫
RD

dDp
1

(−p2 −m2 + iξ)n
= · · · = i(−1)nπ

D
2

Z2m2n−D
Γ
(
n− D

2

)
Γ (n)

.

Again we skip the details of evaluation, noting only that the result on the right-hand side is valid for
D < 2n. The propagator ∆−1 we are interested in corresponds to the choice D = 4, n = 1, which is clearly
outside of the domain of validity for the above evaluation. Moreover, that choice of the parameters puts
us precisely into the pole of the Gamma function, stressing the divergent nature of ∆−1. The dimensional
regularization now consists of two steps. First, we perform analytic continuation of ∆−1(D,n) to the full
complex plane D ∈ C and n ∈ C, except for the poles of the Gamma functions. Second, we introduce
a regularization parameter ε by evaluating the analytically continued expression at the point n = 1 and
D = 4 − ε. Using the asymptotic expansion of the Gamma function in the neighborhood of a pole, we
obtain the following regularized value of the propagator:

∆−1(ε) ≡ ∆−1(4− ε, 1) =
iπ2m2

Z2

[
2

(m
√
π)ε

1

ε
+

1− γ
(m
√
π)ε

+O(ε)

]
, (ε→ 0).

Here γ = 0.5772 . . . is the Euler-Mascheroni constant. In the limit ε→ 0 this reduces to the wanted prop-
agator ∆−1. Again, note that in higher perturbation orders all divergent integrals should systematically
be regularized by this same technique of analytic continuation to D = 4− ε dimensions of spacetime.

We can now see that, in both the cutoff and dimensional regularization scheme, the diagonal value of
the propagator has the generic structure

∆−1 = ∆−1
div + ∆−1

conv. (26)
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The difference between the two regularizations consists of the way the regularization parameter has been
introduced, and in the value of the finite piece ∆−1

conv. Namely, equating the results for ∆−1 in both
regularization schemes, we obtain

log

(
1 +

Λ2

m2

)
− Λ2

m2
=

2

(m
√
π)ε

1

ε
+

1− γ
(m
√
π)ε

+O(ε).

This equation establishes the functional relationship between the parameters Λ and ε. In addition, in the
limit Λ→∞, ε→ 0 it represents an explicit example of the general statement

∞ =∞+ const.

Now that we have performed the parametrization of the infinity of ∆−1, we can explicitly construct
the regularized state sum (13), noting that we have satisfied the requirement (12). Proceeding with the
choice of dimensional regularization scheme, and using (26), we can write the regularized state sum in
the form

Z(dr)
reg [J, g, ε] = Zdiv

reg [J, g, ε] + Zconv
reg [J, g, ε],

where

Zdiv
reg [J, ε] =

1

4

( )
div

e
1
2 (27)

and

Zconv
reg [J, ε] =

[
1 +

1

4

( )
conv

+
1

24

]
e

1
2 . (28)

Here the divergent and convergent parts of the “pin” diagram are obtained by substituting the corre-
sponding regularized expressions

∆−1
div =

iπ2m2

Z2

2

(m
√
π)ε

1

ε
, ∆−1

conv =
iπ2m2

Z2

1− γ
(m
√
π)ε

+O(ε), (29)

in place of the diagonal propagator in the diagram evaluation. This completes the construction of the
regularized state sum.

4.4 Renormalization

The final step in the construction of QFT is the renormalization. In order to eliminate the unphysical
regularization parameter ε from the regularized state sum, we must first “subtract” the divergent piece,
and then take the limit ε → 0 of the remainder. To facilitate the subtraction of the divergent piece, we
must change the definition of the classical action of the theory, by adding counterterms. In this particular
case, we choose the action

S[φ, g, c] =

∫
R4

d4x

[
1

2
Z2φ(x)

(
�−m2

)
φ(x) +

λ

4!
φ4(x)− c

2
φ2(x)

]
, (30)

where the last term on the right-hand side is the counterterm. Its φ-dependence has been judiciously
chosen to match the functional form of the divergent pin diagram, as we shall see below. Note that
despite being quadratic in the field φ, this term is not part of the kinetic piece of the action, but rather
remains in the interaction piece, giving a contribution to the interaction operator.

The counterterm coupling constant is assumed to have a divergent ε-dependent piece and the addi-
tional finite piece,

c = cdiv(ε) + cconv. (31)

Each particular choice of the finite coupling constant amount to one particular renormalization scheme.
The divergent piece will be used to cancel the divergent piece of the pin diagram.
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At this point we should repeat the whole procedure from the very beginning with the new action2.
The presence of the counterterm induces an additional Feynman rule,

ic

∫
R4

d4x ≡
x x

c .

Similar to the case of the λ vertex, the counterterm vertex is assumed to be contracted to a single point
x, while two “legs” are depicted in the diagram only to emphasize the two-valent nature of the vertex.
Using this, we first construct the new naive state sum,

Z[J ] = N
[
1 +

1

8
+

1

4
+

1

24
+

1

2
c +

1

2
c

]
e

1
2 .

It now features two additional diagrams, due to the presence of the counterterm. One of those is a bubble
diagram.

Normalization of the naive state sum removes the normalization constant N , and the two bubble
diagrams:

Znorm[J ] =

[
1 +

1

4
+

1

24
+

1

2
c

]
e

1
2 .

The regularization step is identical as before, only now we can identify the counterterm contribution to
the state sum (see (16) and (17)) as

Zdiv
ct [J, ε] =

1

2

(
c

)
div

e
1
2 , Zconv

ct [J, ε] =
1

2

(
c

)
conv

e
1
2 .

Using this and (27), we can rewrite the renormalization condition (18) as

1

4

( )
div

+
1

2

(
c

)
div

= 0. (32)

Note that both terms have identical functional dependence on sources J(x). Explicitly,

1

4

( )
div

=

=
1

4
iλ

∫
d4x

∫
d4x′ J(x′)

∫
d4x′′ J(x′′)

[
−i∆−1(x, x′)

] [
−i∆−1(x, x′′)

] [
−i∆−1(x, x)

]
div

=
λ

4
∆−1

div

∫
d4x

(∫
d4x′ J(x′)

[
−i∆−1(x, x′)

])2

,

1

2

(
c

)
div

=

=
1

2
icdiv

∫
d4x

∫
d4x′ J(x′)

∫
d4x′′ J(x′′)

[
−i∆−1(x, x′)

] [
−i∆−1(x, x′′)

]
=

i

2
cdiv

∫
d4x

(∫
d4x′ J(x′)

[
−i∆−1(x, x′)

])2

.

In fact, the counterterm in (30) has been chosen precisely to make this happen. Consequently, the
renormalization condition can be satisfied identically with the following choice of the divergent part for
the counterterm coupling constant:

cdiv(ε) =
iλ

2
∆−1

div = −λπ
2m2

Z2

1

(m
√
π)ε

1

ε
, (ε→ 0).

2Arguably, if we were to be fully consistent we should have started with the action (30) to begin with. Unfortunately,
in practice one cannot know in advance what functional form the counterterms should have prior to the analysis of loop
divergences in the action without counterterms.
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Here we have used (29).
Once this has been established, we can take the limit ε→ 0 as per (19) to obtain the final renormalized

state sum:

Z(dr)
ren [J, g, cconv] =

[
1 +

1

4

( )
conv

+
1

2

(
c

)
conv

+
1

24

]
e

1
2 . (33)

This state sum is completely free both of the divergence and of the regularization parameter. All n-point
functions calculated from this state sum are finite. Nevertheless, the state sum still depends on the
choices of regularization and renormalization schemes. This dependence is manifested through the choice
of the finite part of ∆−1 in the pin diagram, and the choice of the finite counterterm coupling constant
cconv in the counterterm diagram. It is important to note that these two finite parts sum up into a single
free parameter, in the same way that their divergent pieces were summed to zero in (32):

1

4

( )
conv

+
1

2

(
c

)
conv

=

=

(
λ

4
∆−1

conv +
i

2
cconv

)∫
d4x

(∫
d4x′ J(x′)

[
−i∆−1(x, x′)

])2

=
i

2

(
λπ2m2

2Z2
(1− γ) + cconv

)
︸ ︷︷ ︸

c

∫
d4x

(∫
d4x′ J(x′)

[
−i∆−1(x, x′)

])2

.

The value of the new combined parameter c is fixed by the combined choices of regularization and
renormalization schemes, and it should not be confused with the original counterterm coupling constant
c in (31).

In this sense, the renormalized state sum represents a one-parameter family of QFT’s, where the value
of the free parameter encapsulates the nonuniqueness in the choices of regularization and renormalization
schemes. What is left is to demonstrate that all these QFT’s are actually only different representatives
of the same equivalence class.

4.5 Renormalization group equations

In order to demonstrate that the family of QFT’s described by the renormalized state sum (33), we
need to establish the renormalization group equations (20). The form (21) of those equations is in our
case given by a single partial differential equation(

∂

∂c
+
∂Z2

∂c

∂

∂Z2
+
∂m2

∂c

∂

∂m2
+
∂λ

∂c

∂

∂λ

)
Zren[J ;Z2(c),m2(c), λ(c); c] = 0

for the three functions Z(c), λ(c) and m(c), with the boundary condition specified by the kinematical
point (Z̃, m̃, λ̃, c̃). This equation has the following solution (we omit the actual process of finding it):

Z2(c) = Z̃2, λ(c) = λ̃, m2(c) = m̃2 +
(2π)4

Z2
(c̃− c). (34)

In particular, the coupling constants Z and λ are constant, while m is not, and “runs” as c changes value.
The meaning of the running of m is the following. Suppose we have made two different choices for the

regularization and renormalization scheme, leading to two renormalized state sums, having parameters
c1 and c2 respectively. The sense in which the second state sum is equivalent to the first is given by
equation (34) — since both theories must agree on the position of the kinematical point, we have

m2
1 = m̃2 +

(2π)4

Z2
(c̃− c1), m2

2 = m̃2 +
(2π)4

Z2
(c̃− c2).
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Eliminating the kinematical point from these equations, we obtain

m2
2 = m2

1 +
(2π)4

Z2
(c1 − c2). (35)

This means that if we choose the coupling constants m1 and m2 to satisfy (35), the two state sums will
be exactly equal,

Zren[J ;Z, λ,m1; c1] = Zren[J ;Z, λ,m2; c2],

and consequently all n-point functions will also be equal. Intuitively, we imagine one physicist to use
regularization and renormalization schemes which lead to the choice c1, while the other physicist uses
different schemes, leading to the choice c2. The predictions of their respective theories will agree if they
choose masses m1 and m2 respectively, such that (35) holds. As a consequence, their two apparently
different QFT’s are actually equivalent, and are just two different representatives of the same equivalence
class of theories.

Consequently, if the classical action is renormalizable, the corresponding QFT is unique, i.e. indepen-
dent of the choice of regularization and renormalization schemes used to construct a representative state
sum.

To conclude the analysis of the φ4 example, let us note the following. In the first perturbation order
in λ the state sum had only one loop divergence, giving rise to one counterterm in the action, and
consequently one parameter c in the renormalized state sum. The renormalization group equations were
therefore easy to satisfy, given that we had three available coupling constants g = {Z, λ,m} to “absorb”
the various choices of c. This established the proof of renormalizability of φ4 theory up to the first
perturbation order.

However, in higher perturbation orders the state sum will feature additional loop divergences, each
necessitating one counterterm, thus giving rise to multiple counterterm parameters c = {c1, c2, . . . }. The
full proof of renormalizability of the φ4 theory entails the proof that only three counterterms are enough
to compensate for all loop divergences that can appear in the state sum, in arbitrary perturbation order.
Namely, in order to make sure that renormalization group equations are not overdetermined, we are
allowed to have at most three counterterm parameters c = {cZ , cm, cλ} as variables for the three coupling
constants Z, m and λ. The full proof of renormalizability thus proceeds by analyzing the type of additional
loop divergences that appear as one moves recursively from n-th to (n+ 1)-th perturbation order. In this
way it can be shown that exactly three counterterms are necessary and sufficient to compensate for all
loop divergences, rendering the φ4 theory fully renormalizable.
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