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THE PROBLEM OF QUANTUM GRAVITY

Why quantize gravity?

• same reasons as electrodynamics (two-slit experiment, hydrogen atom, . . . )

• resolution of singularities (black holes, Big Bang, . . . )

• black hole information paradox (nonunitary evolution??!!)

• theoretical and aesthetical reasons. . .

How to quantize gravity?

• perturbation theory does not work (nonrenormalizability of gravity). . .

• almost zero experimental results to guide us. . .

• . . . we have a problem!



NONRENORMALIZABILITY OF GRAVITY

Perturbative quantization idea

• expand the metric around flat spacetime,

gµν(x) = ηµν + hµν(x),

• use it to expand the Einstein-Hilbert action,

SEH =

∫
d4x
√
−gR =

∫
d4xhµν�h

µν + h3 + h4 + . . . ,

• obtain a theory for self-interacting massless spin-2 field in flat spacetime,

• quantize in analogy to Yang-Mills theories.



NONRENORMALIZABILITY OF GRAVITY

However, the resulting theory is nonrenormalizable:

• tree-level Feynman diagrams are finite,

• one-loop diagrams require a counterterm — remove it by renormalizing gµν,

• two-loop diagrams require a counterterm of type

c2
1

ε2
Rµν

ρσR
ρσ
αβR

αβ
µν, (ε→ 0)

which cannot be removed by renormalization.

• each higher-loop diagram requires another nonrenormalizable counterterm.

The theory contains infinitely many coupling constants!

The theory loses its predictive power — each choice of coupling

constants fixes a different theory of gravity!



PROBLEM OF QUANTUM GRAVITY

S = SEH +

∫
d4x c2L2 + c3L3 + . . .

The problem of quantizing gravity “reduces” to

� inventing a SET OF FIRST PRINCIPLES that Nature obeys �

such that all coupling constants c1, c2, . . . are fixed and can be calculated.

Mainstream candidate approaches:

• String theory • Causal dynamical triangulations

• Noncommutative geometry • Causal set theory

• Loop quantum gravity • Doubly special relativity
. . . and so on. . .

There is no experimental data at the Planck scale, to distinguish be-

tween these ideas.



LOOP QUANTUM GRAVITY

The idea of LQG

• Wilson loops are chosen as basic degrees of freedom,

• formalized as “spin network states”,

• canonically quantized.

Achievemenets

• nonperturbative quantization of GR,

• kinematic sector of the theory well-defined,

• lengths, areas and volumes of space quantized!

Drawbacks

• dynamics described only in principle,

• no proof of semiclassical limit,

• very limited possibility for calculations.



SPINFOAM MODELS

The idea in brief

• build up on canonical LQG (use the same degrees of freedom, construct the same

structure of the Hilbert space, etc.),

• discretize spacetime into 4-simplices,

• perform covariant quantization, by providing a definition for the gravitational path

integral,

Z =

∫
Dgµν exp (iSEH [gµν]) ,

• use this definition to calculate expectation values for all interesting observables as

in quantum field theory.



SPINFOAM MODELS

The idea in a bit more detail

• rewrite GR action using Plebanski formalism:

S =

∫
Bab ∧Rab + “Plebanski constraint”,

• quantize the BF sector by (a) triangulating the spacetime manifold, (b) defining

the path integral

Z =

∫
Dω

∫
DB exp

[
i
∑

∆

B∆R∆

]
= . . . =

∑
Λ

∏
f

A2(Λf)
∏
v

A4(Λv),

where Λ are irreducible representations of SO(3, 1), while A2 and A4 are chosen

such that Z is a topological invariant — the resulting theory is a TQFT (in the

sense of Atiyah);

• enforce the “Plebanski constraint” by projecting the representations from SO(3, 1)

to SU(2), and by redefining the vertex amplitude A4,

• obtain a non-topological path integral definition of the theory, with local degrees

of freedom.



SPINFOAM MODELS

Main achievements

• well-defined nonperturbative quantum theory of gravity,

• both kinematical and dynamical sectors under control,

• can be made to have a proper semiclassical limit,

• predicts the values of the counterterm coupling constants.

Main drawbacks

• geometry is “fuzzy” at Planck scale,

• distances between spacetime points not well-defined,

• matter coupling is problematic,

• hard to extract any results.

The reason for these drawbacks: tetrads are not explicitly present in

the action!



POINCARÉ GROUP

Properties of the Poincaré group:

• P (4) = R4 n SO(3, 1)

• Lorentz group has a connection 1-form ω which transforms as a gauge potential

ω → g−1ωg + g−1dg, (g :M4 → SO(3, 1))

• one can introduce line holonomies

gl(ω) = exp

∫
l

ω

• 4-translation group has a tetrad 1-form e which does not transform as a gauge

potential! (I− e does)

• one can associate a BF action to the Lorentz group,

S =

∫
Bab ∧Rab, (Rab = dωab + ωac ∧ ωcb)

while the translation group is ignored!



2-CATEGORIES AND 2-GROUPS

Category theory

• a category is a structure with “objects” and “morphisms”,

• a group is a category with only one object and invertible morphisms.

2-category theory

• a 2-category is a structure with “objects”, “morphisms” and “2-morphisms”,

• a 2-group is a category with only one object and invertible morphisms and 2-

morphisms.

Crossed module (G,H, ., ∂)

• G and H are Lie groups,

• . is an action of G on H (. : G×H → H),

• ∂ is a homomorphism of H on G (∂ : H → G).

Theorem: every 2-group is isomorphic to an appropriate crossed

module



POINCARÉ 2-GROUP

Properties of the Poincaré 2-group:

• (G,H, ., ∂), where:

G = SO(3, 1), H = R4, . : SO(3, 1)×R4 → R4 ∂ : R4 → SO(3, 1)

• Lorentz group has a connection 1-form ω, but the 2-Poincaré structure generates

in addition a 2-form β, such that (ω, β) is called a 2-connection, and transforms

as

ω → g−1ωg + g−1dg, β → g−1 . β, (g :M4 → SO(3, 1))

ω → ω + ∂η︸︷︷︸
0

, β → β + dη + ω ∧. η + η ∧ η︸ ︷︷ ︸
0

, (η :M4 → R4)

• one can introduce line holonomies and surface holonomies

gl(ω) = exp

∫
l

ω, hf(β) = exp

∫
f

β,

• one can associate the BFCG (also called 2BF ) action to the Poincaré 2-group:

S =

∫
Bab ∧Rab + Ca ∧Ga, (Ga = dβa + ωab ∧ βb).



TETRAD FIELDS IN THE BFCG ACTION

Note that the Lagrange multiplier Ca

• is a 1-form,

• transforms as

C → g−1 . C, C → C wrt. η transformations,

• has an equation of motion ∇Ca = 0.

The multiplier C has exactly the same properties as the tetrad e!

Therefore, make an identification

Ca ≡ ea,

and rewrite the BFCG action as

S =

∫
Bab ∧Rab + ea ∧Ga

This action is topological, and the 2-group structure enables us to

perform the spinfoam-like quantization.



NEW ACTION FOR GENERAL RELATIVITY

The BFCG action can be constrained to give GR:

S =

∫
Bab ∧Rab + ea ∧Ga︸ ︷︷ ︸

topological sector

−φab
(
Bab − εabcdea ∧ eb

)
︸ ︷︷ ︸

constraint

.

Equations of motion are:

• δφ : Bab − εabcdec ∧ ed = 0,

• δβ : ∇ea = 0,

• δω : ∇Bab − e[a ∧ βb] = 0,

• δB : Rab − φab = 0,

• δe : ∇βa + 2εabcdφ
bc ∧ ed = 0,



NEW ACTION FOR GENERAL RELATIVITY

The BFCG action can be constrained to give GR:

S =

∫
Bab ∧Rab + ea ∧Ga︸ ︷︷ ︸

topological sector

−φab
(
Bab − εabcdea ∧ eb

)
︸ ︷︷ ︸

constraint

.

Equations of motion are (after some cleaning-up. . . ):

• equations that determine the multipliers and β:

φab = Rab, Bab = εabcdec ∧ ed, βa = 0

• Einstein equations:

εabcdR
bc ∧ ed = 0,

• no-torsion equation:

∇ea = 0.

This is classically equivalent to general relativity!



THE SPINCUBE MODEL

The spincube quantization procedure:

• rewrite GR action as a topological theory plus constraint:

S =

∫
Bab ∧Rab + ea ∧Ga︸ ︷︷ ︸

topological sector

−φab
(
Bab − εabcdea ∧ eb

)
︸ ︷︷ ︸

constraint

,

• quantize the BFCG sector by (a) triangulating the spacetime manifold, (b) defin-

ing the path integral

Z =

∫
Dω

∫
DB

∫
De
∫
Dβ exp

[
i
∑

∆

B∆R∆ +
∑
l

elGl

]
= . . . =

=
∑

Λ

∏
p

A1(Λp)
∏
f

A2(Λf)
∏
v

A4(Λv),

where Λ are irreducible 2-representations of Poincaré 2-group, while A1, A2 and

A4 are chosen such that Z is a topological invariant (a 2-TQFT),



THE SPINCUBE MODEL

The spincube quantization procedure:

• enforce the constraint Bab = εabcdec ∧ ed by projecting representations Λ to a

subset that satisfies the Heron formula for the area of a triangle,

|mf |l2p = A(∆) ≡
√
s(s− l1)(s− l2)(s− l3), (s =

l1 + l2 + l3
2

),

• redefine the vertex amplitudes A1, A2 and A4 so that the theory is finite and has

a correct classical limit,

• obtain a non-topological path integral definition of the theory, with local degrees

of freedom.

Main achievements:

• geometry is Regge-like at Planck scale,

• distances between spacetime points are well-defined,

• matter coupling is straightforward,

• easier to calculate with.



MATTER FIELDS

Introduction of matter fields is straightforward:

• at the classical level the fermionic matter can be added to the action due to the

explicit presence of the tetrads in the topological sector:

S =

∫
Bab ∧Rab + ea ∧Ga − φab

(
Bab − εabcdea ∧ eb

)
+

+iκ

∫
εabcd e

a ∧ eb ∧ ec ∧ ψ̄
(
γd
↔
d + {ω, γd} +

im

2
ed
)
ψ−

− i3κ
4

∫
εabcde

a ∧ eb ∧ βc ψ̄γ5γ
dψ, (κ =

8

3
πlp).

• scalar fields, Yang-Mills fields, Immirzi parameter, cosmological constant, . . . , can

be added in a similar manner,

• performing the spincube quantization with the new action amounts to introducing

additional labels and terms in the vertex amplitude A4 which describe the matter

degrees of freedom and their coupling to gravity.



APPLICATIONS OF SPINCUBE MODEL

How can all this be useful in any sense?

• spincube quantization provides one with a concrete quantum theory of gravity

with matter,

• one can calculate the effective action using the discretization of the QFT formula

eiΓ (φ) =

∫
Dϕ exp

[
iS[φ + ϕ]− i

∫
d4x

∂Γ

∂φ
ϕ

]
,

When matter fields are present in the model, quantum corrections in

the effective action can enable one to discuss:

• resolution of the black hole and cosmological singularities,

• detailed analysis of the black hole information paradox,

• renormalization properties of QFT,

• deep Planck-scale regime of space, time and matter,

• motivation for further fundamental questions. . .
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