FINITENESS AND EFFECTIVE ACTION OF THE MODIFIED ELPR/FK SPIN FOAM MODEL

Aleksandar Miković (Lusofona University and GFM – University of Lisbon) Marko Vojinović (GFM – University of Lisbon)

arXiv:1101.3294, arXiv:1104.1384

THE PROBLEM

The ELPR/FK state sum is given as:

$$Z_{\sigma} = \sum_{j} \int d\vec{n} \prod_{f \in \sigma} A_{\text{face}}(j) \prod_{e \in \sigma} A_{\text{edge}}(j, \vec{n}) \prod_{v \in \sigma} A_{\text{vertex}}(j, \vec{n}),$$

where

 $A_{\text{face}}(j) = 2j + 1, \qquad A_{\text{edge}} = 1, \qquad A_{\text{vertex}}(j, \vec{n}) = W_v^{ELPR/FK}(j, \vec{n}).$

Simple power counting suggests that Z_{σ} diverges (and also $Z = \sum_{\sigma} Z_{\sigma}$).

Finiteness of Z_{σ} (and Z) is still an OPEN PROBLEM!

The strategy: redefine the vertex amplitude A_{vertex} to make the state sum finite.

This was successfully done for the Barrett-Crane model (Crane, Perez, Rovelli, 2001) and also suggested for the ELPR/FK model (Perini, Rovelli, Speziale, 2009).

THE PROPOSED SOLUTION

Redefine the vertex amplitude as:

$$A_{\text{vertex}}(j,\vec{n}) = \frac{1}{\prod_{f \in v} (2j_f + 1)^p} W_v^{ELPR/FK}(j,\vec{n}),$$

where p is a parameter to be tuned.

Proof of finiteness:

$$|Z_{\sigma}| \leq \sum_{j} \int d\vec{n} \prod_{f} (2j_{f}+1) \prod_{v} \frac{1}{\prod_{f \in v} (2j_{f}+1)^{p}} |W_{v}^{ELPR/FK}(j,\vec{n})|.$$

Since $|W_v^{ELPR/FK}(j,\vec{n})| \leq const$, we have $\int d\vec{n} = const$, and: $|Z_\sigma| \leq const \prod_f \sum_{j_f} \frac{1}{(2j_f+1)^{N_fp-1}},$

where N_f is the number of vertices bounding the face f.

The sum over j_f will converge if $N_f p - 1 > 1$. Since $N_f \ge 2$, a sufficient condition for absolute convergence is

p > 1.

The choice of p is INDEPENDENT OF THE TWO-COMPLEX σ !

Consequently, $|Z_{\sigma}| < \infty$, and so also Z_{σ} is finite, for all σ .

Furthermore, using the "summation = refining" argument (Rovelli, Smerlak, 2010), we have

$$Z = \sum_{\sigma} Z_{\sigma} = Z_{\cup \sigma} < \infty.$$

But, how do we determine the actual value of p?

THE EFFECTIVE ACTION

The large-spin asymptotics of the ELPR/FK vertex amplitude is (Barrett et al., 2009)

$$W_v^{ELPR/FK} = a(v)e^{i\gamma S_R(v)} + b(v)e^{-i\gamma S_R(v)},$$

so introduce another redefinition of the vertex amplitude (Miković, Vojinović, 2010):

$$A_{\text{vertex}} = \frac{1}{\prod_{f \in v} (2j_f + 1)^p} \frac{W_v + \sqrt{W_v^2 - 4ab}}{2a} \qquad \Big(\approx \frac{1}{\prod_{f \in v} (2j_f + 1)^p} e^{i\gamma S_R(v)} \Big).$$

Then one can employ the background-field method to calculate an effective action in the large-spin limit,

$$e^{i\Gamma(j,\vec{n})} = \sum_{j'} \int d\vec{n}' \prod_{f} A_{\text{face}}(j+j') \prod_{v} A_{\text{vertex}}(j+j',\vec{n}+\vec{n}'),$$

and obtain the result:

$$\Gamma \approx \frac{1}{16\pi l_p^2} S_{EH} + \sum_f c_f(p) \log j_f + \frac{1}{2} \operatorname{tr} \log S_R'' + O(j^{-1}).$$

The coefficients $c_f(p)$ can be determined experimentally, and they determine the value of p!

CONCLUSIONS

If we redefine the spin foam vertex amplitude as

$$A_{\text{vertex}} = \frac{1}{\prod_{f \in v} (2j_f + 1)^p} \frac{W_v + \sqrt{W_v^2 - 4ab}}{2a},$$

we obtain a spin foam model with the following properties:

- it keeps all good properties of the original ELPR/FK model,
- it is finite by construction,
- it has general relativity as a classical limit,
- first-order correction terms can be calculated,
- diffeomorphism invariance is recovered in the continuum limit,
- the parameter p can be determined experimentally by measuring the first-order corrections to the classical action.

THANK YOU!