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Chapter 1

Tensor algebra

1.1 Vectors

Pick a D-dimensional manifold M (we shall be mainly interested with the most relevant case for physics,
D = 4), and some point P ∈ M on it.

Draw an arbitrary curve C in M passing through P , and parametrize it using some parameter λ. Now
focus on the directional derivative operator of C with respect to λ, evaluated at P :

d

dλ

∣
∣
∣
λ(P)

Though it may sound a little strange at this point, call this quantity the tangent vector of the curve C
at point P , and denote it with a boldface letter AAA:

AAA ≡
d

dλ

∣
∣
∣
λ(P)

.

Now construct a local coordinate system in the neighborhood of P . It is consisted of D curves, which
are parametrized by parameters called coordinates, and denoted xµ. Assign a directional derivative at
P to all these curves, thus obtaining a set of coordinate tangent vectors for coordinate lines. Denote
these as:

eeeµ ≡
∂

∂xµ

∣
∣
∣
xµ(P)

,

ie. explicitly1:

eee0 ≡
∂

∂x0

∣
∣
∣
x0(P)

, eee1 ≡
∂

∂x1

∣
∣
∣
x1(P)

, . . . eeeD−1 ≡
∂

∂xD−1

∣
∣
∣
xD−1(P)

.

On one hand, any curve C (passing through P and parametrized with λ) can be written as a map from
a real line to a manifold,

C : R → M, λ 7→ P .

On the other hand, it can be written in a coordinate frame as a set of functions xµ(λ),

C̄ : R → R
D, λ 7→ xµ(λ),

while these functions are mapped to the manifold via coordinate curves,

φ : R
D → M, xµ 7→ P ,

1In general relativity physics one typically counts coordinates from 0 to D − 1, rather than from 1 to D. The x0

coordinate is usually interpreted as coordinate time, although it need not have any relation to the “real” physical time.

2



such that C = C̄ ◦ φ. Knowing this, we can always write (according to the usual rules of calculus in R
D):

d

dλ

∣
∣
∣
λ(P)

=
dxµ

dλ

∂

∂xµ

∣
∣
∣
λ(P)

,

which can be rewritten in our new notation as

AAA = Aµeeeµ ≡ A0eee0 + A1eee1 + · · · + AD−1eeeD−1.

Here we have introduced the notation Aµ ≡
dxµ

dλ
for the coefficients.

Now use this to define the concept of tangent space:

Consider all possible curves C parametrized in all possible ways and passing through a single
point P ∈ M. The set of all their directional derivatives evaluated at P satisfies the
axioms of a vector space, isomorphic to R

D. Call this space tangent space of M at P ,
and denote it as TMP (or just TM, when the choice of the point is unambiguous).

The elements of this space are called tangent vectors at P . The tangent vectors of D coordinate
lines provide a natural basis in this vector space, and is usually denoted eeeµ. As we have seen above, any
vector AAA ∈ TM can be represented as a linear combination of basis vectors,

AAA = Aµeeeµ, ∀AAA ∈ TM.

The coefficients in the expansion are called components of vector AAA in basis eeeµ.
Note that the choice of basis is quite arbitrary, so the components Aµ are not unique for a single

unique vector AAA. Of course, once the basis vectors are fixed, the components also become unique. It
is important to emphasize that each vector AAA is a geometric object, and exists regardless of any
coordinates, basis vectors and components one may or may not assign to it. It is defined as a directional
derivative of some curve passing through P , and need no coordinates for its definition.

1.2 1-forms

Consider linear functionals of the tangent space TMP , ie. functions that map vectors into numbers,

fff : TM → R, AAA 7→ fff [AAA] ∈ R,

and are linear:
fff [aAAA + bBBB] = afff [AAA] + bfff [BBB], ∀a, b ∈ R, ∀AAA,BBB ∈ TMP .

A set of all these linear functionals over TMP also has an algebraic structure of a vector space, and is
called a dual tangent space of TMP , and denoted TM∗

P
(or just TM∗ when the choice of the point

P ∈ M is unambiguous). Linear functionals fff , elements of this space, are called 1-forms.
It can be shown that the space TM∗ is also D-dimensional, and that its dual space (the dual of a

dual) is isomorphic to the original tangent space TM.
Given a set of basis vectors eeeµ in TM, one can naturally construct a set of basis functionals in TM∗,

denoted eeeµ, via the biorthogonality relation:

eeeµ[eeeν ] = δµ
ν ≡

{
1 for µ = ν,
0 for µ 6= ν.

This set of basis 1-forms eeeµ is said to be biorthogonal to the basis vectors eeeµ.
Once the basis 1-forms have been chosen, one can expand any 1-form fff using this basis as:

fff = fµeee
µ ≡ f1eee

1 + f2eee
2 + · · · + fD−1eee

D−1,
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where the coefficients fµ are called components of the 1-form fff . Also, given an expansion of some
vector AAA ∈ TM with respect to basis eeeµ, AAA = Aµeeeµ, one can calculate the action of fff on AAA using the
biorthogonality relation and linearity of fff as:

fff [AAA] = fµeee
µ[AAA] = fµeee

µ[Aνeeeν ] = fµAνeeeµ[eeeν ] = fµAνδµ
ν = fµAµ ∈ R.

This process is called contraction.
If the tangent space basis eeeµ was chosen to be a set of tangent vectors to coordinate curves in M (it

need not be chosen this way!!!), ie. if

eeeµ =
∂

∂xµ

∣
∣
∣
xµ(P)

,

it is called coordinate basis of tangent vectors, and the corresponding biorthogonal basis of 1-forms
is also called coordinate basis of 1-forms. It also deserves special notation:

eµ = dddxµ.

We shall explain later the distinction between coordinate and noncoordinate bases, and the meaning of
the symbol ddd.

1.3 The ×, ⊗ and ⊕

Consider two arbitrary nonempty sets, A and B. One can construct their Cartesian product as a set
of all ordered pairs of all their elements:

A × B = {(a, b) | a ∈ A, b ∈ B}.

If the two sets are not just any sets, but have some algebraic structure, one may wish to supplement the
× with additional axioms which will make the product “behave well”.

For example, if U and V are vector spaces, they already carry two operations, addition of vectors

and multiplication of a vector with a scalar. So construct a Cartesian product of two vector spaces, and
provide appropriate axioms such that it is linear with respect to addition and multiplication with a scalar
(denote it as ⊗ in order to distinguish it from general ×):

(uuu1 +uuu2) ⊗vvv = uuu1 ⊗vvv +uuu2 ⊗vvv , uuu⊗ (vvv1 + vvv2) = uuu ⊗ vvv1 +uuu ⊗vvv2,

(cuuu) ⊗ vvv = c(uuu ⊗vvv), uuu ⊗ (cvvv) = c(uuu ⊗vvv),

∀uuu1,uuu2,uuu ∈ U, ∀vvv1,vvv2,vvv ∈ V, ∀c ∈ R.

Call it the tensor product of vector spaces U and V . The tensor product is constructed in such a way
that it represents the most general bilinear operation. The resulting set U ⊗V is also vector space, which
dimension is the product of dimensions of U and V . It is the largest possible space that contains U
and V as subspaces (once). Note:

• The two vector spaces need not be the same, so the tensor product is not commutative:

uuu ⊗vvv 6= vvv ⊗uuu.

It is not commutative even if the two spaces U and V are the same.

• The two vector spaces need to be constructed over the same field of scalars (in this case R).

• An arbitrary vector from U ⊗ V in general cannot be written as a product uuu⊗vvv , but only as
a linear combination of such products.
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Given two arbitrary matrices, one can construct their tensor product by multiplying all their elements
in all possible combinations. For example,

[
a b c
d e f

]

⊗





x
y
z



 =











ax bx cx
ay by cy
az bz cz
dx ex fx
dy ey fy
dz ez fz











.

In general, if one matrix is of type m × n and the other of type p × q, then their tensor product is a
matrix of type mp × nq.

The tensor product is also called Kronecker product and outer multiplication.

As another example, assume again that U and V are vector spaces. Construct again their Cartesian
product, but this time provide somewhat different axioms with respect to addition and multiplication
with a scalar (denote it as ⊕ in order to distinguish it from ⊗ and ×):

(uuu1 +uuu2) ⊕ (vvv1 + vvv2) = uuu1 ⊕ vvv1 +uuu2 ⊕vvv2,

c(uuu ⊕vvv) = (cuuu) ⊕ (cvvv),

∀uuu1,uuu2,uuu ∈ U, ∀vvv1,vvv2,vvv ∈ V, ∀c ∈ R.

Call it the direct sum of vector spaces U and V . The direct sum is constructed such that the resulting
set U ⊕V is also a vector space, which dimension is the sum of dimensions of U and V . It is the smallest
possible space that contains U and V as subspaces (independently). Note:

• The two vector spaces need not be the same, so the direct sum is not commutative:

uuu ⊕vvv 6= vvv ⊕uuu.

It is not commutative even if U and V are the same.

• The two vector spaces need to be constructed over the same field of scalars (in this case R).

• An arbitrary vector from U ⊕ V can always be written as a sum uuu ⊕ vvv , where uuu and vvv are
some vectors from U and V .

Given two arbitrary matrices, one can construct their direct sum by combining them in a bigger
block-diagonal matrix. For example,

[
a b c
d e f

]

⊕





x
y
z



 =









a b c 0
d e f 0
0 0 0 x
0 0 0 y
0 0 0 z









.

In general, if one matrix is of type m × n and the other of type p × q, then their direct sum is a matrix
of type (m + p) × (n + q).

1.4 Tensor algebra

Return again to the tangent space TMP and its dual, TM∗
P
. Use the tensor product and direct sum to

construct a vector space of tensors of type (p, q):

Tp,q ≡ TM⊗ · · · ⊗ TM
︸ ︷︷ ︸

p times

⊗TM∗ ⊗ · · · ⊗ TM∗

︸ ︷︷ ︸

q times

⊕ all possible permutations.

5



Tensors of type (p, q) are said to be p times contravariant and q times covariant. The reason for
this terminology will be explained later.

Take an example for an illustration. A space of tensors of type (2, 1) is

T2,1 = TM⊗ TM⊗ TM∗ ⊕ TM⊗ TM∗ ⊗ TM ⊕ TM∗ ⊗ TM⊗ TM.

Given bases eeeµ and eeeµ in TM and TM∗, we can represent any tensor from T2,1 as a linear combination
in appropriate basis. For example, any tensor AAA from the space TM⊗ TM⊗ TM∗ can be written as

AAA = Aµν
λeeeµ ⊗ eeeν ⊗ eeeλ,

and we can write a corresponding tensor from T2,1 as:

ÃAA = AAA⊕ 000 ⊕ 000 = (Aµν
λeeeµ ⊗ eeeν ⊗ eeeλ) ⊕ 000 ⊕ 000.

Here 000 is the zero vector from spaces TM⊗TM∗⊗TM and TM∗⊗TM⊗TM. Since there is a natural
correspondence between ÃAA and AAA, one usually omits these extra zeroes, and writes AAA ≡ ÃAA ∈ T2,1.

Using this convention, there are two more types of tensors which belong to T2,1:

BBB = Bµ
ν

λeeeµ ⊗ eeeν ⊗ eeeλ, CCC = Cµ
νλeeeµ ⊗ eeeν ⊗ eeeλ.

Note that there is natural morphism between vector spaces TM ⊗ TM ⊗ TM∗, TM ⊗ TM∗ ⊗ TM
and TM∗ ⊗ TM ⊗ TM. Namely, for every tensor BBB ∈ TM ⊗ TM∗ ⊗ TM there is a corresponding
(non-unique!) tensor B̃BB ∈ TM⊗TM⊗ TM∗ such that both of them have the same components (in the
same basis):

BBB = Bµ
ν

λeeeµ ⊗ eeeν ⊗ eeeλ ⇒ B̃BB = Bµ
ν

λeeeµ ⊗ eeeλ ⊗ eeeν ,

and similarly for CCC ∈ TM∗ ⊗ TM⊗ TM. It is obvious that these tensors, although different, contain
the same information. One can consider appropriate equivalence classes across these spaces, and choose
a representative from the appropriate space as one sees fit. Therefore it is not necessary to make a sharp
distinction between the three types of tensors, and we can consider only the complete big space T2,1.

In a similar fashion, one can write down tensors and their components and bases for all other spaces
Tp,q. For example, a tensor from the space T4,3 could be written as

AAA = Aµν
ρσλ

αβeeeµ ⊗ eeeν ⊗ eeeρ ⊗ eeeσ ⊗ eeeλ ⊗ eeeα ⊗ eeeβ .

Now define the space of tensors of type (0, 0), T0,0, to be just the field of numbers, R,

T0,0 ≡ R.

Tensors of this type are called scalars. Using this, one can make the following final definition:

The direct sum of all possible tensor spaces of type (p, q) over all possible values for p and
q,

T (P) ≡
∞⊕

p=0

∞⊕

q=0

Tp,q(P),

is called the tensor algebra at point P . It is one of the most general algebraic structures
one can construct from a given vector space. Its basic operations are

• multiplication with a scalar (carried over from the vector space TM),

• addition (also carried over from the vector space TM), and

• multiplication (the tensor product, ⊗).
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Explicitly, the structure of the tensor algebra is the following:

T = R scalars

⊕ TM vectors

⊕ TM∗ 1-forms

⊕ TM⊗ TM tensors of type (2, 0)
⊕ TM⊗ TM∗ ⊕ TM∗ ⊗ TM tensors of type (1, 1)
⊕ TM∗ ⊗ TM∗ tensors of type (0, 2)
⊕ TM⊗ TM⊗ TM tensors of type (3, 0)
⊕ . . . and so on.

1.5 Elementary operations on tensors

There are several various operations on tensors one can construct within the tensor algebra. We shall
introduce them all one by one, typically via examples.

Addition. While addition is defined overall in the tensor algebra, it is nontrivial only when one
considers tensors of the same type (p, q). For example, given AAA,BBB ∈ T2,1, we have

CCC = AAA +BBB = (Aµν
λ + Bµν

λ)eeeµ ⊗ eeeν ⊗ eeeλ, or in components: Cµν
λ = Aµν

λ + Bµν
λ.

Multiplication with a scalar. Any tensor can be multiplied with a number. For example, given

a tensor AAA ∈ T2,1 and a scalar c ∈ R, we have

BBB = cAAA = cAµν
λeeeµ ⊗ eeeν ⊗ eeeλ, or in components: Bµν

λ = cAµν
λ.

Tensor product. Also called outer multiplication and Kronecker product, it has already been

introduced. It is defined for all tensors. For example, given AAA ∈ T1,0 and BBB ∈ T2,1, we have

CCC = AAA ⊗BBB = AρBµν
λeeeρ ⊗ eeeµ ⊗ eeeν ⊗ eeeλ, or in components: Cρµν

λ = AρBµν
λ.

Note:

• The resulting tensor has components which are just ordinary multiplication of components of AAA

and BBB, in all possible combinations.

• CCC ∈ T3,1, which means that the result is outside of both spaces T1,0 and T2,1 (this is the reason
for the name “outer multiplication”).

• The product AAA ⊗BBB 6= BBB ⊗AAA because ⊗ is not commutative. However, both products “carry the
same information” since the components are multiplied using ordinary real number multiplication,
which is commutative.

• Multiplication with a scalar can be considered as a special case of tensor product between a tensor
of type T0,0 with some other arbitrary tensor.

Contraction. Contraction is the procedure of using some piece of a tensor coming from TM∗ and
letting it act on some other piece coming from TM as a functional. For example, given AAA ∈ T2,1, we can
write it down in a basis,

AAA = Aµν
λeeeµ ⊗ eeeν ⊗ eeeλ ∈ TM⊗ TM⊗ TM∗.

Now let the TM∗ part act on the first TM part, as follows:

BBB = C1,3(AAA) = Aµν
λC1,3(eeeµ ⊗ eeeν ⊗ eeeλ) linearity of functionals

= Aµν
λeeeν ⊗ eeeλ[eeeµ] definition: action of “3 on 1”

= Aµν
λeeeν ⊗ δλ

µ biorthogonality relation

= Aµν
λδλ

µeeeν tensor multiplication with a scalar

= Aµν
µeeeν Einstein summation convention
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In component language,
Bν ≡ C1,3(A

µν
λ) = Aµν

µ.

Note:

• For the example above, one can define contractions C1,3 and C2,3 which are different operations
in general (in components, Aµν

µ and Aµν
ν). For a tensor of type (p, q) a total of pq different

contractions are possible.

• Given a tensor of type (p, q), the result of any of its contractions is a tensor of type (p − 1, q − 1).
One basis 1-form eeeλ always “eats itself out” with one basis vector eeeµ.

• Tensors of type (p, 0) and (0, q) cannot be contracted.

• Tensors of type (1, 1) can be represented as matrices. The (single definable) contraction of these
tensors is equivalent to taking the trace of the corresponding matrix, ie. summing the diagonal
elements. Therefore, contraction is the generalization of the idea of trace from (1, 1) tensors
to arbitrary tensors. However, tensors of type (2, 0) and (0, 2), although representable in matrix
form, cannot be contracted, regardless of any matrix trace operation.

• The contraction is independent of the choice of the basis vectors. This is not obvious, and will be
proved later when we discuss transformations between bases.

Inner product. Also known as matrix multiplication, it is the sequence of taking the tensor

product of two tensors and then contracting them in some way. For example, given two tensors, AAA ∈ T2,1

and BBB ∈ T1,1, we can write:

CCC = AAA ·BBB = C3,4(AAA ⊗BBB) = Aµν
λBλ

ρeeeµ ⊗ eeeν ⊗ eeeρ or in components: Cµν
ρ = Aµν

λBλ
ρ.

As another example, we consider matrices, ie. tensors of type (1, 1). The inner product of two such
tensors,

AAA ·BBB = C2,3(AAA ⊗BBB) = Aµ
λBλ

ρeeeµ ⊗ eeeρ,

is again a tensor of type (1, 1), ie. a matrix (so that the product of two elements in T1,1 is again an
element of T1,1 — hence the name “inner” product). From the component language it is obvious that
this is exactly the usual matrix multiplication.

Note that matrix multiplication is not commutative because tensor product ⊗ is not commutative.

Transpose. The transpose of a tensor is defined by interchanging the positions of two basis vectors

in a tensor product:

(eeeµ ⊗ eeeν)T = eeeν ⊗ eeeµ, (eeeµ ⊗ eeeν)T = eeeν ⊗ eeeµ, (eeeµ ⊗ eeeν)T = eeeν ⊗ eeeµ.

For example, given a tensor AAA ∈ T2,1, one can define three different transposes, AAAT12 , AAAT13 and AAA
T23 , as

follows:

BBB1 = AAA
T12 = Aµν

λ(eeeµ ⊗ eeeν ⊗ eeeλ)T12 = Aµν
λeeeν ⊗ eeeµ ⊗ eeeλ, or in components: Bνµ

λ = Aµν
λ,

BBB2 = AAA
T13 = Aµν

λ(eeeµ ⊗ eeeν ⊗ eeeλ)T13 = Aµν
λeee

λ ⊗ eeeν ⊗ eeeµ, or in components: Bλ
νµ = Aµν

λ,

BBB3 = AAA
T23 = Aµν

λ(eeeµ ⊗ eeeν ⊗ eeeλ)T23 = Aµν
λeeeµ ⊗ eeeλ ⊗ eeeν , or in components: Bµ

λ
ν = Aµν

λ.

Essentially, we are switching positions between a pair of indices. The transpose operation is a straight-
forward generalization of a transpose of a matrix.

Exterior product. Also called wedge product, it is a completely antisymmetrized tensor product,

and is denoted as ∧. For example, given two vectors, AAA,BBB ∈ T1,0, we have

CCC = AAA ∧BBB = AAA⊗BBB −BBB ⊗AAA = (AµBν − AνBµ)eeeµ ⊗ eeeν ,
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or in component language,
Cµν = AµBν − AνBµ.

Note:

• The resulting tensor CCC in the above example is called a bivector. The result of taking the wedge
of three vectors, AAA ∧BBB ∧CCC , is called a trivector, and so on to the general case of a p-vector, a
completely antisymmetric tensor of type (p, 0).

• The result of wedging two 1-forms, fff ∧ ggg is called a 2-form, and so on to the general case of a
p-form, a completely antisymmetric tensor of type (0, p).

• The wedge between a vector and a 1-form is not defined. Only wedges inside spaces Tp,0 exist
(p-vectors), and similarly for wedges inside spaces T0,p (p-forms).

• The above formula for the wedge of two vectors cannot be used recursively! Namely, we could
try to calculate AAA ∧BBB ∧CCC as:

AAA ∧BBB ∧CCC = AAA ∧ (BBB ⊗CCC −CCC ⊗BBB)
= AAA ⊗ (BBB ⊗CCC −CCC ⊗BBB) − (BBB ⊗CCC −CCC ⊗BBB) ⊗AAA

= AAA ⊗BBB ⊗CCC −AAA ⊗CCC ⊗BBB −BBB ⊗CCC ⊗AAA +CCC ⊗BBB ⊗AAA,

which is wrong, because the result is not totally antisymmetric! Last two terms have the wrong
sign, and two more terms are missing! The correct result is

AAA ∧BBB ∧CCC = AAA⊗BBB ⊗CCC −AAA⊗CCC ⊗BBB +BBB ⊗CCC ⊗AAA−CCC ⊗BBB ⊗AAA −BBB ⊗AAA ⊗CCC +CCC ⊗AAA ⊗BBB,

and is always constructed in such a way that the interchange of any two vectors changes the overall
sign of the product.

• If AAA and BBB are a p-vector and a q-vector respectively (or a p-form and a q-form), then the following
commutation rule is valid:

AAA ∧BBB = (−1)pqBBB ∧AAA.

• The exterior product is the basic ingredient in the so-called exterior calculus or algebra of
differential forms, which will be introduced in the next section.

1.6 Differential forms, exterior calculus

Start from the tensor algebra T (P), and consider its quotient T/AAA⊗AAA for AAA ∈ TM, ie. the subset of all
completely antisymmetric tensors. Furthermore, consider only the tensors of type (p, 0). This quotient
is a subalgebra of the tensor algebra, and is called exterior algebra Λ(P). Its typical element, say
AAA ∈ T3,0 can be written in the usual form

AAA = Aµνλeeeµ ⊗ eeeν ⊗ eeeλ.

However, since it is completely antisymmetric, it can also be rewritten in the form

AAA =
1

3!
Aµνλeeeµ ∧ eeeν ∧ eeeλ

(the factor 1/3! appears due to the overcounting of components in the sum). In general, any p-vector
from Λ can be written in the form

AAA =
1

p!
Aµ1...µpeeeµ1

∧ · · · ∧ eeeµp
.
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Thus, we see that Λ(P) is an algebra with operations of addition and scalar multiplication inherited from
T (P), while the product of elements is the exterior product, ∧.

Completely analogously, instead using tensors of type (p, 0), one can use tensors of type (0, p), and
construct the algebra of differential forms, Λ∗(P), whose elements are

fff =
1

p!
fµ1...µp

eeeµ1 ∧ · · · ∧ eeeµp .

Note:

• Both algebras Λ and Λ∗ are finite-dimensional. If the tangent space TM has dimension D, there
are at most D linearly independent basis vectors eeeµ which can be used to construct a basis element
in the exterior algebra,

eee0 ∧ eee1 ∧ · · · ∧ eeeD−1.

If we try to wedge another vector, the result will be zero, since the antisymmetry of ∧ implies
eeeµ ∧ eeeµ = 0. The total dimension of Λ is 2D. Similarly for Λ∗.

• Due to the natural factorization of tensor algebra T , exterior algebra Λ inherits this structure:

Λ = Λ0 ⊕ Λ1 ⊕ · · · ⊕ ΛD

= R scalars

⊕ TM vectors

⊕ TM∧ TM 2-vectors

⊕ . . .
⊕ TM∧ · · · ∧ TM

︸ ︷︷ ︸

D times

D-vectors.

Analogous factorization can be written for Λ∗, with slightly different terminology:

Λ∗ = Λ∗0 ⊕ Λ∗1 ⊕ · · · ⊕ Λ∗D

= R scalars or 0-forms

⊕ TM∗ 1-forms

⊕ TM∗ ∧ TM∗ 2-forms

⊕ . . .
⊕ TM∗ ∧ · · · ∧ TM∗

︸ ︷︷ ︸

D times

D-forms.

• If a p-form fff can be written as an exterior product of p 1-forms ggg1, . . . ,gggp,

fff = ggg1 ∧ · · · ∧ gggp,

it is called a simple p-form. Otherwise it can be written only as a linear combination of such
products, and is not simple. Similar terminology is used also for p-vectors.

• Exterior algebra is also known by the name Grassmann algebra, and its elements called Grass-
mann numbers or anticommutative numbers (as opposed to real numbers), due to the anti-
commutativity of exterior product.

• If we consider the case D = 2, and choose two vectors AAA = Aµeeeµ and BBB = Bµeeeµ, their exterior
product can be calculated explicitly as

AAA ∧BBB = (A0eee0 + A1eee1) ∧ (B0eee0 + B1eee1)

= A0B1eee0 ∧ eee1 + A1B0eee1 ∧ eee0

= (A0B1 − A1B0)eee0 ∧ eee1

= det

[
A0 A1

B0 B1

]

eee0 ∧ eee1

.
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Thus, wedge product and exterior algebra represent the generalization of the concepts of deter-
minant (D-forms) and minors (p-forms), and provide natural formalism for their systematic de-
scription.

• Exterior algebra was first introduced and explored by Hermann Grassmann in his work on geometry
called “Theory of Extension” (from 1844). Hence the name “exterior”.

1.7 Transformations of basis, principle of relativity

So far we have discussed tensor algebra using one particular choice of the basis vectors eeeµ in TMP . This
is however far from unique, and now we shall consider what happens when we switch from one basis to
another.

Start from the basis eeeµ, and construct a new basis, eeeµ′ , as a linear combination of the old one:

eeeµ′ = Mµ
µ′eeeµ.

Note:

• Since the new basis vectors must be linearly independent, the transformation matrix M ≡ [Mµ
µ′ ]

must be nonsingular, detM 6= 0. Other than that, it is completely arbitrary.

• The “prime” is used to denote the new basis. However, it is more instructive to put a prime on
the index rather than on the symbol eee. Such notation might seem unusual, but it has several
advantages over the more common one, as we shall see below.

• Indices µ and µ′ in Mµ
µ′ are to be understood as completely independent of each other, despite

the same symbol µ. Due to the prime, there can be no confusion.

• Since det M 6= 0, one can introduce the inverse transformation matrix, denoted as M−1 =
[Mµ′

µ]. It cannot be confused with Mµ
µ′ due to the different position of the prime. Since the two

matrices are inverse to each other, following identities hold:

Mµ
µ′Mµ′

ν = δµ
ν , Mµ′

µMµ
ν′ = δµ′

ν′ ,

where δµ
ν is the familiar Kronecker delta symbol.

Given a vector AAA ∈ TM, one can expand it as a linear combination in both bases:

AAA = Aµeeeµ = Aµ′

eeeµ′ .

Using the transformation rule between two bases, one can calculate the transformation rule between
components Aµ and Aµ′

:
Aµ′

= Mµ′

νAν .

Components of a vector transform using the inverse transformation matrix. It is very impor-
tant to stress that AAA is a geometric object, an arrow (tangent to some curve in the manifold M),
which is independent of any choice of basis. The components of AAA transform precisely in such a way
to cancel the transformation of the basis vectors, so that AAA does not transform at all:

AAA
′ = Aµ′

eeeµ′ = (Mµ′

νAν)(Mλ
µ′eeeλ) = Mµ′

νMλ
µ′

︸ ︷︷ ︸

δλ
ν

Aνeeeλ = Aλeeeλ = AAA.

We see that only quantities that carry an index actually change, so we drop the prime from AAA
′,

and keep primes only on indices.
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Now consider the biorthogonal basis, eeeµ. Starting from bases eeeµ and eeeµ′ in TM, one can construct

biorthogonal bases eeeµ and eeeµ′

in TM∗, and ask what is the relation between them. The answer is easy
to obtain from the biorthogonality relation:

eeeµ′

= Mµ′

µeee
µ.

Basis 1-forms transform using the inverse transformation matrix. Consequently, given that any
1-form fff ∈ TM∗ is also a geometric object independent of any choice of basis, one can easily deduce the
transformation rule for the components of 1-forms:

fµ′ = Mµ
µ′fµ.

Components of 1-forms transform using the original transformation matrix.
Now introduce some terminology:

• Any quantity which transforms the same way as a basis in TM is said to be transformed
covariantly (ie. “same as” the basis). Since the basis is transformed using the matrix
Mµ

µ′ , from the position of its indices it is easy to see that all quantities that carry a
subscript (“down”) index transform covariantly.

• Any quantity which transforms in the opposite way from the basis in TM is said to
be transformed contravariantly (ie. “opposite of” the basis). Since in this case the
inverse transformation matrix Mµ′

µ is used, from the position of its indices it is easy to
see that all quantities that carry a superscript (“up”) index transform contravariantly.

• The covariance/contravariance is determined solely by the position of the index, and
is independent of the nature of the object transformed (components, bases, etc.)

Finally, we can consider the general case of any tensor. Every tensor is (like a vector and a 1-form) a
geometric object, independent of any basis chosen, so it does not transform when the basis is being
changed. The components of a tensor are always transformed in precisely such a way as to cancel the
transformation of the basis, so that the total tensor remains unchanged. As an example, consider the
tensor AAA ∈ T2,1. It can be written as a linear combination in both bases:

AAA = Aµν
λeeeµ ⊗ eeeν ⊗ eeeλ = Aµ′ν′

λ′eeeµ′ ⊗ eeeν′ ⊗ eeeλ′

.

Knowing the transformation rules for both basis vectors and basis 1-forms, we can deduce that components
of AAA transform in accord with the appropriate positioning of the indices:

Aµ′ν′

λ′ = Aµν
λMµ′

µMν′

νMλ
λ′ .

Thus, components Aµν
λ transform twice contravariantly and once covariantly, the basis eeeµ ⊗ eeeν ⊗ eeeλ

transforms twice covariantly and once contravariantly, and AAA does not transform at all, since the
former two cancel each other out.

A general tensor of type (p, q) has components with p indices “up” and q indices “down”, and is thus
usually said to be “p times contravariant and q times covariant”. But it is extremely important to stress
that only the components of a tensor have this property, while the basis of the tensor has the
opposite property, in such a way that the tensor itself is invariant with respect to the change of
basis.

We stress that the invariance property of tensors is so important because it offers itself as a perfect
tool for the embodiment of the principle of general relativity:
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The principle of general relativity states:

All laws of physics must be expressed in such a way as to not depend
on the choice of any particular coordinate system.

If we want to express some physical theory in such a way as to fulfill this axiom, it is
necessary and sufficient to express all the laws as tensor equations, since these are
automatically independent of the choice of the basis used. Note:

• This is the “why” for the whole story of tensor calculus in theory of general relativity.

• The above principle is the reason why the theory of general relativity is named the
way it is named.

Next we turn attention to one technical issue — contraction. We have defined contraction of tensors
as action of one basis 1-form onto one basis vector. Now we shall prove that this procedure is in fact
independent on the choice of the basis itself. To this end, consider an example, AAA ∈ T2,1, and its
contraction C2,3 in some basis:

C2,3(AAA) = Aµν
νeeeµ.

We can perform the same procedure in the primed basis, to obtain

C′

2,3(AAA) = Aµ′ν′

ν′eeeµ′ .

Now transform this back to the old basis, noting that Aµ′ν′

ν′ has only one index (the other two are
summed over):

C′

2,3(AAA) = Aµ′ν′

ν′eeeµ′ = (Aµν′

ν′Mµ′

µ)(Mλ
µ′eeeλ) = Aλν′

ν′eeeλ = Aλν
ρM

ν′

νMρ
ν′eeeλ = Aλρ

ρeeeλ = C2,3(AAA).

As we can see, the contraction is invariant with the change of basis. This is due to the fact that when
contracting, we always sum over one contravariant and one covariant index in components of the tensor
being contracted. While the components themselves change with respect to all indices, the changes of
summed indices cancel each other, since they transform in the opposite way.

Finally, there is one more very important topic to be addressed. Namely, the original basis eeeµ was
introduced as a set of tangent vectors of the coordinate curves at point P , ie. the set of differential
operators,

eeeµ ≡
∂

∂xµ
,

evaluated at P . After a change to a new basis eeeµ′ using the arbitrary nonsingular transformation matrix
M , one can ask is it possible to construct a new set of coordinate curves, such that the new basis can be
represented as a set of differential operators acting on these new coordinate curves. The general answer
to this question is no, this is not always possible. In order to see this, consider a set of alternative
coordinate curves which pass through P and are parametrized with xµ′

. Then construct the new basis
relative to them in the same way as the old one was constructed:

eeeµ′ ≡
∂

∂xµ′
,

evaluated at P . In order to deduce the explicit form of the transformation matrix between the new and
old basis, one can employ the chain rule for differentials familiar from ordinary calculus:

∂

∂xµ′
=

∂xµ

∂xµ′

∂

∂xµ
,

and just rewrite it in tensor notation:

eeeµ′ = Mµ
µ′eeeµ, where Mµ

µ′ ≡
∂xµ

∂xµ′
.
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However, knowing that the partial derivatives commute, the following identity for M holds:

∂

∂xλ′
Mµ

µ′ =
∂

∂xµ′
Mµ

λ′ .

Now remember that in general case matrix M is arbitrary, and thus may not satisfy the above
identity! This means that the new basis may not be constructible from any set of coordinate
curves.

Consequently, starting from some set of coordinate curves, we may construct a basis (called coordi-
nate basis), and then use some arbitrary matrix M to switch to a new basis. Depending on whether
M was chosen in such a way as to satisfy the above identity, the new basis is called coordinate (holo-
nomic) basis or noncoordinate (anholonomic) basis. Therefore, there are two distinct classes of
basis vectors, and later we shall give a convenient method to determine whether a given basis is coordinate
or noncoordinate one.

In older literature on tensor calculus, one can find a definition saying that a tensor (of type (p, q)) is
a set of quantities Aµ1...µp

ν1...νq
that satisfies the following transformation rule:

Aµ′

1
...µ′

p
ν′

1
...ν′

q
= Aµ1...µp

ν1...νq

∂xµ′

1

∂xµ1

. . .
∂xµ′

p

∂xµp

∂xν1

∂xν′

1

. . .
∂xν1

∂xν′

1

.

This “component” kind of approach to tensors is flawed on several grounds:

• A tensor is not just a set of components, but rather a linear combination of these components with
some set of basis vectors. If basis is ignored, the geometric nature of tensors and their essential
invariance with respect to the choice of this basis is not obvious, which makes the principle of
relativity hard to understand.

• Due to the possible arbitrary transformation of basis, a perfectly valid tensor can be expressed via
perfectly valid components which do not satisfy the above definition.

• It is not sufficient to consider just coordinate bases (as is usually done is some books), because
(a) one misses a whole lot of powerful geometry and insight from the formalism and (b) the gen-
eral transformation matrices Mµ′

µ and Mµ
µ′ are absent from the theory, which is a major

handicap.

The final point is actually the most severe one. In order to appreciate and understand why, let us just
say that matrices Mµ′

µ and Mµ
µ′ have physical interpretation of gravitational field potentials.

In four dimensions, they are usually called tetrads, and are denoted eeeµ′

µ and eeeµ
µ′ . They play a very

fundamental role in theory of general relativity, as we shall see later on. For example, if we omit them
from the formalism, we have no way to incorporate fermion fields and couple them to gravity. We
shall revisit tetrads in third chapter.

Contents of “Tensor Calculus Part 2” (in preparation):

• Chapter 2: Tensor analysis

– Tensor fields, parallel transport

– Covariant and exterior derivatives, commutators

– Curvature and torsion

• Chapter 3: The metric

– The metric tensor, principle of equivalence

– Nonmetricity, classification of geometries

– Associated tensors, index gymnastics

– Cartan structure equations, calculation of curvature
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